Advertisement

Photonic Network Communications

, Volume 30, Issue 1, pp 4–16 | Cite as

Energy consumption modelling of optical networks

  • Kerry Hinton
  • Fatemeh Jalali
  • Ashrar Matin
Article

Abstract

A simple, generic measurement-based power consumption model is described and is shown to apply to equipment, networks and services. This model is used to construct power consumption estimates for a diverse range of network scenarios including customer premises equipment and access, edge and core networks and services provided over a network.

Keywords

Green networks Energy efficiency  ICT power consumption 

References

  1. 1.
    Vanclay, F.: Impact assessment and the triple bottom line: competing pathways to sustainability. In: Cheney, H., Katz, E., Solomon, F. (eds.) Sustainability and Social Science, Roundtable Proceedings. Institute for Sustainable Futures, CSIRO, Sydney (2004)Google Scholar
  2. 2.
  3. 3.
  4. 4.
    Coroama, V., Hilty, L.: Assessing internet energy intensity: a review of methods and results. Environ. Impact Assess. Rev. 45, 63 (2014)CrossRefGoogle Scholar
  5. 5.
    Van Heddeghem, W., et al.: Power consumption modelling in optical multilayer networks. Photon. Netw. Commun. 24(2), 86 (2012)CrossRefGoogle Scholar
  6. 6.
    Baliga, J. et al.: Energy consumption of wired and wireless access networks. IEEE Commun. Mag., 70 (2011)Google Scholar
  7. 7.
    Taal, A., et al.: Storage to energy: modelling the carbon emission of storage tasks offloading between data centers. In: IEEE 11th Annual Consumer Communications and Networking Conference (CNCC) (2014)Google Scholar
  8. 8.
    Chowdhury, P., et al.: On the design of energy-efficient mixed-line rate (MLR) optical networks. J. Lightwave Technol. 30(1), 130 (2012)CrossRefGoogle Scholar
  9. 9.
    Elmirghani, J., et al.: GreenTouch greenmeter core networks power consumption model and results. IEEE Online GreenCommun. (2014)Google Scholar
  10. 10.
    Fallahpour, A., et al.: Energy efficient and spectrum assignment with regenerator placement in elastic optical networks. J. Lightwave Technol. 32(10), 2019 (2014)CrossRefGoogle Scholar
  11. 11.
    Niccolini, L., et al.: Building a power-proportional software router. In: Proceedings of the 2012 USENIX, (2012)Google Scholar
  12. 12.
    Barroso, L., Holze, U.: The case for energy-proportional computing. IEEE Comput., 33 (2007)Google Scholar
  13. 13.
    Kharitonov, D.: Time-domain approach to energy efficiency: high performance network elements in design. IEEE Globecom Workshop (2009)Google Scholar
  14. 14.
    Vishwanath, A.: Estimating the energy consumption for packet processing, storage and switching in optical-IP routers. In: Proceedings of OFC/NFOEC 2013, 1016 (2013)Google Scholar
  15. 15.
    Vishwanarh, A., et al.: Modelling energy consumption in high-capacity routers and switches. IEEE J. Sel. Areas Commun. (2014)Google Scholar
  16. 16.
    Auer, G., et al.: Earth project, deliverable D2.3. In: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown 7th Framework Programme (2010)Google Scholar
  17. 17.
    Jalali, F., et al.: Energy consumption of photo sharing in online social networks. In: 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid ComputingGoogle Scholar
  18. 18.
    Lange, C., Kosiankowski, D., Weidmann, R., Gladisch, A.: Energy consumption of telecommunications networks and related improvement options. IEEE JSTQE 17(2), 285 (2011)Google Scholar
  19. 19.
    Zhang, Y., Tornatore, M., Choudhury, P., Murkherji, B.: Energy optimisation in IP-over-WDM networks. Opt. Switch. Netw. 8, 171 (2011)CrossRefGoogle Scholar
  20. 20.
    Idzikowski, F., et al.: Saving energy in IP-over-WDM networks by switching off line cards in low-demand scenarios. In: Proceedings 14th Conference on Optical Network Design and Modelling (ONDM), p. 42 (2010)Google Scholar
  21. 21.
    Baliga, J., et al.: Energy consumption of optical IP networks. IEEE J. Lightwave Technol. 27(13), 2391 (2009)CrossRefGoogle Scholar
  22. 22.
    Jalali, F., et al.: Energy Consumption Comparison of Nano and Centralised Data Centres. ACM Sigmetrics 2014, Austin (2014)Google Scholar
  23. 23.
    GreenTouch White Paper. GreenTouch GreenMeter study: reducing the net energy consumption in communications networks by up to 90 % by 2020, June 2013 (www.greentouch.org)
  24. 24.
    Hormann, P., Campbell, L.: Data storage energy efficiency in the Zettabyte Era. Ajtde 2(3), 51.1 (2014)CrossRefGoogle Scholar
  25. 25.
    Basmadjian, R., et al.: A methodology to predict the power consumption of servers in data centres. In: Proceedings ACM SIG Communication, e-energy (2011)Google Scholar
  26. 26.
    Avelar, V., Azevedo, D., French, A., (eds).: \({PUE^TM}\): a comprehensive examination of the metric. The green grid White Paper, 49 (2012)Google Scholar
  27. 27.
    Imran, M., Katranaras, E., (eds.): Energy efficiency analysis of the reference systems, areas of improvements and target breakdown, Earth Deliverable D2.3 2010, (https://www.ict-earth.eu/publications/deliverables/deliverables.html)
  28. 28.
    Guerin, R., et al.: Equivalent capacity and its application to bandwidth allocation in high-speed networks. IEEE JSAC 9(7), 968 (1991)Google Scholar
  29. 29.
    Giambene, G.: Queuing Theory and Telecommunications: networks and Applications. Springer, Berlin (2014)CrossRefGoogle Scholar
  30. 30.
    Makkes, M., et al.: A decision framework for placement of applications in clouds that minimises their carbon footprint. J. Cloud Comput., 2(21) (2013)Google Scholar
  31. 31.
    Cisco: Best practice in core network capacity planning. White Paper (2013) (www.cisco.com)
  32. 32.
    Fisher, W., Suchara, M., Rexford, J.: Greening backbone networks: reducing energy consumption by shutting off cables in bundled links. In: Proceedings of the first ACM SIGCOMM workshop in Green Networking, p. 29 (2010)Google Scholar
  33. 33.
    Vitesse White Paper: Building an edge/access router with the GigaStream VSC874 Queue Manager (2005)Google Scholar
  34. 34.
    Edge-Core Networks Corporation, Product Catalogue 2013 ( www.edge-core.com)
  35. 35.
    Coroama, V., et al.: The direct energy demand of internet data flows. J. Ind. Ecol. 17, 680 (2013)Google Scholar
  36. 36.
    Kilper, D., et al.: Power trends in communication networks. IEEE JSTQE 17(2), 275 (2011)Google Scholar
  37. 37.
    Greenpeace: Clicking clean: how companies are creating the Green internet. www.greenpeace.org (2014)
  38. 38.
  39. 39.
    Facebook: carbon and energy impact. https://www.facebook.com/green/app_439663542812831
  40. 40.
    Apple: Environmental responsibility report. 2014 Progress Rep. (2014)Google Scholar
  41. 41.
    Microsoft. Becoming carbon neutral: how Microsoft is becoming Lean, Green and Accountable (2012)Google Scholar
  42. 42.
    Baliga, J., et al.: Green cloud computing: balancing energy in processing, storage and transport. Proc. IEEE 99, 149 (2011)CrossRefGoogle Scholar
  43. 43.
    Clark, D.: Google discloses carbon footprint for the first time. The guardian, Sept 9th (2011) (http://www.theguardian.com/environment/2011/sep/08/google-carbon-footprint)
  44. 44.
    Cisco power consumption calculator. http://tools.cisco.com/cpc

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centre for Energy-Efficient TelecommunicationsUniversity of MelbourneParkvilleAustralia

Personalised recommendations