Skip to main content
Log in

Genome-Wide Analysis of the ZRT, IRT-Like Protein (ZIP) Family and Their Responses to Metal Stress in Populus trichocarpa

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The ZRT, IRT-like protein (ZIP) family plays an important role in the transport of zinc (Zn) and iron (Fe) across the cell membrane in many different species. However, studies on ZIP family are mainly limited in herbaceous species; hence, we investigated functional divergence of ZIP family in Populus trichocarpa. We identified 21 ZIP genes in P. trichocarpa and classified them into four groups based on phylogenetic analysis. Structural analyses revealed that most of the PtrZIP transporters have eight transmembrane domains (TMDs). PtrZIP members were unequally positioned in 19 P. trichocarpa linkage groups (LGs), with six tandem duplications and four segmental duplications. The promoter regions of PtrZIP genes contain Zn, Fe, copper (Cu), and other metal stress-related cis-elements. Additionally, tissue-specific expression of PtrZIP genes showed that most of them had relatively high expression levels in the root. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed that the expression of PtrZIP genes were induced not only under deficiency or excess condition of Zn, Fe, Cu and manganese (Mn) but also under excess condition of cadmium (Cd) and lead (Pb) stress. These findings indicated that PtrZIP genes may have played potential roles in metal transporters. Genome-wide analysis of PtrZIP genes in P. trichocarpa provided more comprehensive insights on the structure and function of this gene family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Assuncao AG, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C, Immink RG, van Eldik M, Fiers M, Schat H et al (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci U S A 107:10296–10301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:369–373

    Article  Google Scholar 

  • Barberon M, Dubeaux G, Kolb C, Isono E, Zelazny E, Vert G (2014) Polarization of iron-regulated transporter 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc Natl Acad Sci U S A 111:8293–8298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho S, Barreira da Silva R, Shawki A, Castro H, Lamy M, Eide D, Costa V, Mackenzie B, Tomás AM (2015) LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites. Mol Microbiol 96:81–595

    Article  Google Scholar 

  • Chang SJ, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chen X, Chen Z, Zhao HL, Zhao Y, Cheng BJ, Xiang Y (2014) Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments. PLoS One 9:e87156

    Article  PubMed  PubMed Central  Google Scholar 

  • Claus J, Chavarría-Krauser A (2012) Modeling regulation of zinc uptake via ZIP transporters in yeast and plant roots. PLoS One 7:e37193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genom 2008:619832

    Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eng BH, Guerinot ML, Eide D, Saier MH Jr (1998) Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. J Membr Biol 166:1–7

    Article  CAS  PubMed  Google Scholar 

  • Fu XZ, Zhou X, Xing F, Ling LL, Chun CP, Cao L, Aarts MGM, Peng LZ (2017) Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. Raf.) Front Plant Sci 8:588

    PubMed  PubMed Central  Google Scholar 

  • Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M, Krämer U, Demoulin V, Baurain D (2005) A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. Plant Physiol 137:428–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang D, Dai W (2015) Molecular characterization of the basic helix-loop-helix (bHLH) genes that are differentially expressed and induced by iron deficiency in Populus. Plant Cell Rep 34:1211–1224

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  CAS  PubMed  Google Scholar 

  • Ivanov R, Bauer P (2016) Sequence and coexpression analysis of iron-regulated ZIP transporter genes reveals crossing points between iron acquisition strategies in green algae and land plants. Plant Soil 2016:1–13

    Google Scholar 

  • Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE (2005) The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res 15:1292–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Let 581:2263–2272

    Article  Google Scholar 

  • Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Vankova R, Tanaka M, Seki M, Ham LH, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. PLoS One 7:e42411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Jeong HJ, Kim SA, Lee J, Guerinot ML, An G (2010a) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim SA, Lee J, Guerinot ML, An G (2010b) Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cells 29:551–558

    Article  CAS  PubMed  Google Scholar 

  • Lemerciera C, Toa RQ, Swansonb BJ, Lyonsc GE, Koniecznya SF (1997) Mist1: a novel basic helix-loop-helix transcription factor exhibits a developmentally regulated expression pattern. Dev Biol 182:101–113

    Article  Google Scholar 

  • Li WH, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature 292:237–239

    Article  CAS  PubMed  Google Scholar 

  • Li SZ, Zhou XJ, Li HB, Liu YF, Zhu LY, Guo JJ, Liu XQ, Fan YL, Chen JT, Chen R (2015) Overexpression of ZmIRT1 and ZmZIP3 enhances iron and zinc accumulation in transgenic Arabidopsis. PLoS One 10:e0136647

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC, Wu JF, Huang JL, Yeh KC (2009) Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol 182:392–404

    Article  CAS  PubMed  Google Scholar 

  • Lin YF, Zeshan H, Sangita T, Henk S, Aarts MGM (2016) Expression of the ZNT1 zinc transporter from the metal hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PLoS One 11:e0149750

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu YK, Zhang D, Wang L, Li DQ (2013) Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep 31:1446–1460

    Article  CAS  Google Scholar 

  • Liu TK, Song XM, Duan WK, Huang ZN, Liu GF, Li Y, Hou XL (2014) Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage. Plant Mol Biol Rep 32:1041–1056

    Article  Google Scholar 

  • Liu QG, Wang ZC, Xu XM, Zhang HZ, Li CH (2015) Genome-wide analysis of C2H2 zinc-finger family transcription factors and their responses to abiotic stresses in poplar (Populus trichocarpa). PLoS One 10:e0134753

    Article  PubMed  PubMed Central  Google Scholar 

  • Migeon A, Blaudez D, Wilkins O, Montanini B, Campbell MM, Richaud P, Thomine S, Chalot M (2010) Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cell Mol Life Sci 67:3763–3784

    Article  CAS  PubMed  Google Scholar 

  • Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64:369–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno T, Hirano K, Kato S, Obata H (2008) Cloning of ZIP family metal transporter genes from the manganese hyperaccumulator plant Chengiopanax sciadophylloides, and its metal transport and resistance abilities in yeast. Soil Sci Plant Nutr 54:86–94

    Article  CAS  Google Scholar 

  • Mondal TK, Ganie SA, Rana MK, Sharma TR (2014) Genome-wide analysis of zinc transporter genes of maize (Zea mays). Plant Mol Biol Rep 32:605–616

    Article  CAS  Google Scholar 

  • Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol 148:455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puig S, Andres-Colas N, Garcia-Molina A, Penarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30:271–290

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  PubMed  Google Scholar 

  • Sanceno V, Puig S, Mira H, Thiele DJ, Penarrubia L (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–587

    Article  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signaling. Nature 459:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Sjödin A, Street NR, Sandberg G, Gustafsson P, Jansson S (2009) The Populus genome integrative explorer (PopGenIE): a new resource for exploring the Populus genome. New Phytol 182:1013–1025

    Article  PubMed  Google Scholar 

  • Soler M, Camargo EL, Carocha V, Cassan-Wang H, San Clemente H, Savelli B, Hefer CA, Paiva JA, Myburg AA, Grima-Pettenati J (2015) The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function. New Phytol 206:1364–1377

    Article  CAS  PubMed  Google Scholar 

  • Stephens BW, Cook DR, Grusak MA (2011) Characterization of zinc transport by divalent metal transporters of the ZIP family from the model legume Medicago truncatula. Biometals 24:51–58

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor G (2002) Populus: arabidopsis for forestry. Do we need a model tree? Ann Bot 90:681–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiong J, McDonald G, Genc Y, Shirley N, Langridge P, Huang CY (2015) Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). New Phytol 207:1097–1109

    Article  CAS  PubMed  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Barberon M, Zelazny E, Seguela M, Briat JF, Curie C (2009) Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229:1171–1179

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wu YL, Li LF, Su XD (2013) Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res 23:213–224

    Article  PubMed  Google Scholar 

  • Wang MX, Yuan MQ, Fang Y (2016) Research on spatiotemporal spread of avian influenza A(H7N9) virus based on discrete geographic information. Article in Chinese 37:1491–1496

    CAS  Google Scholar 

  • Wintz H, Fox T, Wu YY, Feng V, Chen W, Chang HS, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    Article  CAS  PubMed  Google Scholar 

  • Wu HL, Chen CL, Du J, Liu HF, Cui Y, Zhang Y, He YJ, Wang YQ, Chu CC, Feng ZY et al (2012) Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158:790–800

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Kalluri UC, Jawdy S, Gunter LE, Yin T, Tschaplinski TJ, Weston DJ, Ranjan P, Tuskan GA (2008) The F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. Plant Physiol 148:1189–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan YX, Wu H, Wang N, Li J, Zhao WN, Du J, Wang DW, Ling HQ (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18:385–397

    Article  CAS  PubMed  Google Scholar 

  • Zhang HZ, Yang JL, Wang WD, Li DD, Hu XQ, Wang H, Wei M, Liu QG, Wang ZC, Li CH (2015) Genome-wide identification and expression profiling of the copper transporter gene family in Populus trichocarpa. Plant Physiol Biochem 97:451–460

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Eide D (1996a) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci U S A 93:2454–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Eide D (1996b) The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J Biol Chem 271:23203–23210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work were supported by the National Natural Science Foundation of China (No. 31400573) and the 111 project (B16010).

Author information

Authors and Affiliations

Authors

Contributions

Haizhen Zhang, Shicheng Zhao, Xuemei Xu, and Chenghao Li designed the experiments and wrote the manuscript. Haizhen Zhang and Dandan Li performed the experiments. Haizhen Zhang, Shicheng Zhao, and Xuemei Xu analyzed the data.

Corresponding author

Correspondence to Chenghao Li.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Data Archiving Statement

All identified amino acid of ZIP gene sequences were deposited into the NCBI database (http://www.ncbi.nlm.nih.gov/). The accession numbers are listed in Table 1.

Electronic Supplementary Material

Fig S1

(DOCX 547 kb).

Table S1

(DOCX 17 kb).

Table S2

(DOCX 14 kb).

Table S3

(DOCX 14 kb).

Table S4

(DOCX 14 kb).

Table S5

(DOCX 16 kb).

Table S6

(DOCX 15 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhao, S., Li, D. et al. Genome-Wide Analysis of the ZRT, IRT-Like Protein (ZIP) Family and Their Responses to Metal Stress in Populus trichocarpa . Plant Mol Biol Rep 35, 534–549 (2017). https://doi.org/10.1007/s11105-017-1042-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-017-1042-2

Keywords

Navigation