Plant Molecular Biology

, Volume 95, Issue 1–2, pp 63–88 | Cite as

Comparative analysis of Histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties

  • Amit Paul
  • Pratiti Dasgupta
  • Dipan Roy
  • Shubho Chaudhuri
Article

Abstract

Rice being an important cereal crop is highly sensitive to salinity stress causing growth retardation and loss in productivity. However, certain rice genotypes like Nonabokra and Pokkali show a high level of tolerance towards salinity stress compared to IR64 variety. This differential response of tolerant varieties towards salinity stress may be a cumulative effect of genetic and epigenetic factors. In this study, we have compared the salinity-induced changes in chromatin modifications at the OsBZ8 locus in salt-tolerant Nonabokra and salt-sensitive IR64 rice varieties. Expression analysis indicates that the OsBZ8 gene is highly induced in Nonabokra plants even in the absence of salt stress, whereas in IR64, the expression significantly increases only during salt stress. Sequence analysis and nucleosomal arrangement within the region −2000 to +1000 of OsBZ8 gene show no difference between the two rice varieties. However, there was a considerable difference in histone modifications and DNA methylation at the locus between these varieties. In Nonabokra, the upstream region was hyperacetylated at H3K9 and H3K27, and this acetylation did not change during salt stress. However, in IR64, histone acetylation was observed only during salt stress. Moreover, the upstream region of OsBZ8 gene has highly dynamic nucleosome arrangement in Nonabokra, compared to IR64. Furthermore, loss of DNA methylation was observed at OsBZ8 locus in Nonabokra control plants along with low H3K27me3 and high H3K4me3. Control IR64 plants show high DNA methylation and enriched H3K27me3. Collectively these results indicate a significant difference in chromatin modifications between the rice varieties that regulates differential expression of OsBZ8 gene during salt stress.

Keywords

Salinity stress IR64 Nonabokra Histone modification DNA methylation Chop-PCR 

Abbreviations

BZ8

Basic leucine zipper8

NB

Nonabokra

ABRE

Abscisic acid response element

DRE

Dehydration-responsive element

HAT

Histone acetyltransferase

TSS

Transcription start site

TBP

TATA-box binding protein

Notes

Acknowledgements

The authors sincerely thank Dr Ronita Nag Chaudhuri for critically reviewing the manuscript. The authors also thank Prof. A. N. Lahiri Majumder and Prof. Dibyendu Narayan Sengupta for their valuable scientific advice during this study. This work was supported by DBT, Government of India, Grant No. BT/AB/05/02/2007. The authors sincerely acknowledge the Bose Institute for the institutional fund support. Contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the funding agencies.

Author contributions

SC designed the research. AP and SC designed and performed the experiments shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 11. AP, DR and SC standardised and performed the experiments shown in Figs. 2, 3, 4, 5, 11. AP, PD and SC performed the experiments shown in Figs. 9 and 10. SC, AP and PD analysed the data and SC wrote the manuscript. All the authors reviewed the results and approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest with the contents of this article.

Supplementary material

11103_2017_636_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1893 KB)

References

  1. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412. doi: 10.1038/nature05915 CrossRefPubMedGoogle Scholar
  2. Casati P et al (2008) Histone acetylation and chromatin remodeling are required for UV-B-dependent transcriptional activation of regulated genes in maize. Plant Cell 20:827–842. doi: 10.1105/tpc.107.056457 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chen X, Zhou DX (2013) Rice epigenomics and epigenetics: challenges and opportunities. Curr Opin Plant Biol 16:164–169. doi: 10.1016/j.pbi.2013.03.004 CrossRefPubMedGoogle Scholar
  4. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139. doi: 10.1016/j.pbi.2008.12.006 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chua YL, Brown AP, Gray JC (2001) Targeted histone acetylation and altered nuclease accessibility over short regions of the pea plastocyanin gene. Plant Cell 13:599–612CrossRefPubMedPubMedCentralGoogle Scholar
  6. Creyghton MP et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107:21931–21936. doi: 10.1073/pnas.1016071107 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Das P, Nutan KK, Singla-Pareek SL, Pareek A (2015) Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice. Front Plant Sci 6:712. doi: 10.3389/fpls.2015.00712 PubMedPubMedCentralGoogle Scholar
  8. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379. doi: 10.1016/j.tplants.2014.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Deshmukh R et al (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci 5:244. doi: 10.3389/fpls.2014.00244 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ding Y, Avramova Z, Fromm M (2011) The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J 66:735–744. doi: 10.1111/j.1365-313X.2011.04534.x CrossRefPubMedGoogle Scholar
  11. Dinneny JR (2015) Traversing organizational scales in plant salt-stress responses. Curr Opin Plant Biol 23:70–75. doi: 10.1016/j.pbi.2014.10.009 CrossRefPubMedGoogle Scholar
  12. Du Z et al (2013) Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica Mol Plant 6:1463–1472 doi: 10.1093/mp/sst018 CrossRefPubMedGoogle Scholar
  13. Eichten SR, Schmitz RJ, Springer NM (2014) Epigenetics: beyond chromatin modifications and complex genetic regulation. Plant Physiol 165:933–947. doi: 10.1104/pp.113.234211 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ferreira LJ, Azevedo V, Maroco J, Oliveira MM, Santos AP (2015) Salt tolerant and sensitive rice varieties display differential methylome flexibility under salt stress. PLoS ONE 10:e0124060. doi: 10.1371/journal.pone.0124060 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fuks F (2005) DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 15:490–495. doi: 10.1016/j.gde.2005.08.002 CrossRefPubMedGoogle Scholar
  16. Fulnecek J, Kovarik A (2014) How to interpret methylation sensitive amplified polymorphism (MSAP) profiles? BMC Genet 15:2. doi: 10.1186/1471-2156-15-2 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Garcia-Gonzalez E, Escamilla-Del-Arenal M, Arzate-Mejia R, Recillas-Targa F (2016) Chromatin remodeling effects on enhancer activity. Cell Mol Life Sci. doi: 10.1007/s00018-016-2184-3 PubMedGoogle Scholar
  18. Garg R, Narayana Chevala V, Shankar R, Jain M (2015) Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 5:14922. doi: 10.1038/srep14922 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gong F, Yang L, Tai F, Hu X, Wang W (2014) “Omics” of maize stress response for sustainable food production: opportunities and challenges. OMICS 18:714–732. doi: 10.1089/omi.2014.0125 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gutzat R, Mittelsten Scheid O (2012) Epigenetic responses to stress: triple defense? Curr Opin Plant Biol 15:568–573. doi: 10.1016/j.pbi.2012.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052. doi: 10.1111/j.1365-313X.2010.04124.x CrossRefPubMedGoogle Scholar
  22. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080. doi: 10.1126/science.1063127 CrossRefPubMedGoogle Scholar
  23. Kaldis A, Tsementzi D, Tanriverdi O, Vlachonasios KE (2011) Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta 233:749–762. doi: 10.1007/s00425-010-1337-0 CrossRefPubMedGoogle Scholar
  24. Kaplan N et al (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362–366. doi: 10.1038/nature07667 CrossRefPubMedGoogle Scholar
  25. Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L (2012) H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics 13:424. doi: 10.1186/1471-2164-13-424 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kim JM et al (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588. doi: 10.1093/pcp/pcn133 CrossRefPubMedGoogle Scholar
  27. Kim JM, Sasaki T, Ueda M, Sako K, Seki M (2015) Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci 6:114. doi: 10.3389/fpls.2015.00114 PubMedPubMedCentralGoogle Scholar
  28. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220. doi: 10.1038/nrg2719 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lawrence RJ et al (2004) A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol Cell 13:599–609CrossRefPubMedGoogle Scholar
  30. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719. doi: 10.1016/j.cell.2007.01.015 CrossRefPubMedGoogle Scholar
  31. Luo M, Liu X, Singh P, Cui Y, Zimmerli L, Wu K (2012) Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta 1819:129–136. doi: 10.1016/j.bbagrm.2011.06.008 CrossRefPubMedGoogle Scholar
  32. Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274. doi: 10.1016/j.pbi.2011.03.004 CrossRefPubMedGoogle Scholar
  33. Moore LD, Le T, Fan G (2012) DNA methylation and its basic function. Neuropsychopharmacology 38:23–38. doi: 10.1038/npp.2012.112 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mukherjee K, Choudhury AR, Gupta B, Gupta S, Sengupta DN (2006) An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. BMC Plant Biol 6:18. doi: 10.1186/1471-2229-6-18 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nakagawa H, Ohmiya K, Hattori T (1996) A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant J 9:217–227CrossRefPubMedGoogle Scholar
  36. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170. doi: 10.3389/fpls.2014.00170 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350. doi: 10.1104/pp.107.112821 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ooi SK et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717. doi: 10.1038/nature05987 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Osakabe Y, Osakabe K, Shinozaki K, Tran LS (2014) Response of plants to water stress. Front Plant Sci 5:86. doi: 10.3389/fpls.2014.00086 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pasini D et al (2010) Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res 38:4958–4969. doi: 10.1093/nar/gkq244 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pavangadkar K, Thomashow MF, Triezenberg SJ (2010) Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. Plant Mol Biol 74:183–200. doi: 10.1007/s11103-010-9665-9 CrossRefPubMedGoogle Scholar
  42. Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582. doi: 10.1093/pcp/pcr106 CrossRefPubMedGoogle Scholar
  43. Richards EJ (2011) Natural epigenetic variation in plant species: a view from the field. Curr Opin Plant Biol 14:204–209. doi: 10.1016/j.pbi.2011.03.009 CrossRefPubMedGoogle Scholar
  44. Rose NR, Klose RJ (2014) Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta 1839:1362–1372. doi: 10.1016/j.bbagrm.2014.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Roy D, Paul A, Roy A, Ghosh R, Ganguly P, Chaudhuri S (2014) Differential acetylation of histone H3 at the regulatory region of OsDREB1b promoter facilitates chromatin remodelling and transcription activation during cold stress. PLoS ONE 9:e100343. doi: 10.1371/journal.pone.0100343 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Santos AP et al (2011) Transcription regulation of abiotic stress responses in rice: a combined action of transcription factors and epigenetic mechanisms. OMICS 15:839–857. doi: 10.1089/omi.2011.0095 CrossRefPubMedGoogle Scholar
  47. Sekinger EA, Moqtaderi Z, Struhl K (2005) Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell 18:735–748. doi: 10.1016/j.molcel.2005.05.003 CrossRefPubMedGoogle Scholar
  48. Shankar R, Bhattacharjee A, Jain M (2016) Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Sci Rep 6:23719. doi: 10.1038/srep23719 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309. doi: 10.1016/j.tplants.2007.05.001 CrossRefPubMedGoogle Scholar
  50. van Dijk K et al (2010) Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol 10:238. doi: 10.1186/1471-2229-10-238 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Velanis CN, Herzyk P, Jenkins GI (2016) Regulation of transcription by the Arabidopsis UVR8 photoreceptor involves a specific histone modification. Plant Mol Biol 92:425–443. doi: 10.1007/s11103-016-0522-3 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Vire E et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874. doi: 10.1038/nature04431 CrossRefPubMedGoogle Scholar
  53. Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15:626–638CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wada Y, Miyamoto K, Kusano T, Sano H (2004) Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genomics 271:658–666. doi: 10.1007/s00438-004-1018-4 CrossRefPubMedGoogle Scholar
  55. Wang WS et al (2011) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960. doi: 10.1093/jxb/erq391 CrossRefPubMedGoogle Scholar
  56. Zhao X, Wang W, Zhang F, Deng J, Li Z, Fu B (2014) Comparative metabolite profiling of two rice genotypes with contrasting salt stress tolerance at the seedling stage. PLoS ONE 9:e108020. doi: 10.1371/journal.pone.0108020 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zheng Q, Rowley MJ, Bohmdorfer G, Sandhu D, Gregory BD, Wierzbicki AT (2013) RNA polymerase V targets transcriptional silencing components to promoters of protein-coding genes. Plant J 73:179–189. doi: 10.1111/tpj.12034 CrossRefPubMedGoogle Scholar
  58. Zhou J, Wang X, He K, Charron JB, Elling AA, Deng XW (2010) Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. Plant Mol Biol 72:585–595. doi: 10.1007/s11103-009-9594-7 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Amit Paul
    • 1
  • Pratiti Dasgupta
    • 1
  • Dipan Roy
    • 1
  • Shubho Chaudhuri
    • 1
  1. 1.Division of Plant BiologyBose InstituteKolkataIndia

Personalised recommendations