, Volume 56, Issue 4, pp 1059–1068 | Cite as

Photosynthesis and physiology responses of paired near-isogenic lines in waxy maize (Zea mays L.) to nicosulfuron

  • J. Wang
  • X. M. Zhong
  • X. L. Lv
  • Z. S. Shi
  • F. H. Li
Original paper


Nicosulfuron is a post-emergence herbicide used for weed control in fields of maize (Zea mays L.). We used a pair of nearly isogenic inbred lines, SN509-R (nicosulfuron-resistant) and SN509-S (nicosulfuron-sensitive), to study the effect of nicosulfuron on waxy maize seedling. After the nicosulfuron treatment, net photosynthetic rate, stomatal conductance, transpiration rate, leaf maximum photochemical efficiency of PSII, photochemical quenching of chlorophyll fluorescence, and the actual photochemical efficiency of PSII were significantly lower in SN509-S than those of SN509-R, contrary to intercellular CO2 concentration, stomatal limitation, and nonphotochemical quenching. Compared to SN509-R, antioxidant enzyme activities in SN509-S decreased significantly in response to the nicosulfuron treatment, while SN509-S exhibited an increased malondialdehyde content, which was associated with lower antioxidant enzyme activities. These results collectively suggest that the nicosulfuron-resistance mechanism was associated with photosynthetic rate, reactive oxygen species metabolism, and protective mechanisms.

Additional key words

antioxidant enzymes chlorophyll florescence nicosulfuron photosynthesis waxy maize 



ascorbate peroxidase






intercellular CO2 concentration


days after herbicide treatment


electron transport rate


minimal fluorescence yield of the dark-adapted state


maximal fluorescence yield of the dark-adapted state


minimal fluorescence yield of the light-adapted state


maximal fluorescence yield of the lightadapted state


variable fluorescence


maximal quantum yield of PSII photochemistry


stomatal conductance


stomatal limitation




nonphotochemical quenching


nearly-isogenic lines


nitroblue tetrazolium chloride


net photosynthetic rate




photochemical quenching coefficient


reactive oxygen species


superoxide dismutase


effective quantum yield of PSII photochemistry


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi H.: Catalase in vitro.–Methods Enzymol. 105: 121–126, 1984.CrossRefPubMedGoogle Scholar
  2. Aroca R., Irigoyen J.J., Sánchez-Díaz M.: Photosynthetic characteristics and protective mechanisms against oxidative stress during chilling and subsequent recovery in two maize varieties differing in chilling sensitivity.–Plant Sci. 161: 719–726, 2001.CrossRefGoogle Scholar
  3. Belgers J.D.M., van Lieverloo R.J., van der Pas L.J.T. et al.: Effects of the herbicide 2,4-D on the growth of nine aquatic macrophytes.–Aquat. Bot. 86: 260–268, 2007.CrossRefGoogle Scholar
  4. Bigot A., Fontaine F., Clément C., Vaillant-Gaveau N.: Effect of the herbicide flumioxazin on photosynthetic performance of grapevine (Vitis vinifera L.).–Chemosphere 67: 1243–1251, 2007.CrossRefPubMedGoogle Scholar
  5. Cakmak I., Marschner H.: Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves.–Plant Physiol. 98: 1222–1227, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Debona D., Nascimento K.J.T., Gomes J.G.O. et al.: Physiological changes promoted by a strobilurin fungicide in the rice-Bipolaris oryzae interaction.–Pestic. Biochem. Phys. 130: 8–16, 2016.CrossRefGoogle Scholar
  7. Demmig B., Winter K., Krüger A., Czygan F.C.: Photoinhibition and zeaxanthin formation in intact leaves: A possible role of the xanthophyll cycle in the dissipation of excess light energy.–J. Plant Physiol. 84: 218–224, 1987.CrossRefGoogle Scholar
  8. Dobbels A.F., Kapusta G.: Postemergence weeds control in corn (Zea mays) with nicosulfuron combinations.–Weed Technol. 7: 844–850, 1993.CrossRefGoogle Scholar
  9. Eberline C.V., Rosow K.M., Geadelmann J.L., Openshaw S.J.: Differential tolerance of corn genotypes to DPX-M6316.–Weed Sci. 37: 651–657, 1989.Google Scholar
  10. Frankart C., Eullaffroy P., Vernet G.: Comparative effects of four herbicides on non-photochemical fluorescence quenching in Lemna minor.–Environ. Exp. Bot. 49: 159–168, 2003.CrossRefGoogle Scholar
  11. Freemark K., Boutin C.: Nontarget-plant risk assessment for pesticide registration.–Environ. Manage. 18: 841–854, 1994.CrossRefGoogle Scholar
  12. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.–Biochim. Biophys. Acta 990: 87–92, 1989.CrossRefGoogle Scholar
  13. Geoffroy L., Frankart C., Eullaffroy P.: Comparison of different physiological parameter responses in Lemna minor and Scenedesmus obliquus exposed to herbicide flumioxazin.–Environ. Pollut. 131: 233–241, 2004.CrossRefPubMedGoogle Scholar
  14. Giannopolitis C.N., Ries S.K.: Superoxide dismutases: I. occurrence in higher plants.–Plant Physiol. 59: 309–314, 1977.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Govindjee: A role for a light-harvesting antenna complex of photosystem II in photoprotection.–Plant Cell 14: 1663–1668, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hassan N.M., Nemat Alla M.M.: Oxidative stress in herbicidetreated broad bean and maize plants.–Acta Physiol. Plant. 27: 429–438, 2005.CrossRefGoogle Scholar
  17. Heath R.L., Packer L.: Photoperoxidation in isolated chloroplasts. I. kinetics and stoichiometry of fatty acid peroxidation.–Arch. Biochem. Biophys. 125: 189–198, 1968.CrossRefPubMedGoogle Scholar
  18. Hu H.J., Shi Z.S., Lv X.L. et al.: [Effect of herbicide nicosulfuron on photosynthesis traits and chlorophyll fluorescence parameters of wax maize.]–J. Maize Sci. 22: 77–80, 2014. [In Chinese]Google Scholar
  19. Hussain M.I., González L., Reigosa M.: Phytotoxic effects of allelochemicals and herbicides on photosynthesis, growth and carbon isotope discrimination in Lactuca sativa.–Allelopathy J. 26: 157–174, 2010.Google Scholar
  20. Hwang H.J., Kim J.H., Eu Y.J. et al.: Photoinhibition of photosystem I is accelerated by dimethyldithiocarbamate, an inhibitor of superoxide dismutase, during light-chilling of spinach leaves.–J. Photoch. Photobio. B. 73: 79–85, 2004.CrossRefGoogle Scholar
  21. Jakob B., Heber U.: Photoproduction and detoxification of hydroxyl radicals in chloroplasts and leaves and relation to photoinactivation of photosystems I and II.–Plant Cell Physiol. 37: 629–635, 1996.CrossRefGoogle Scholar
  22. Jiang L., Yang H.: Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat.–Ecotox. Environ. Safe. 72: 1687–1693, 2009.CrossRefGoogle Scholar
  23. Jiang Z., Ma B.B., Erinle K.O. et al.: Enzymatic antioxidant defense in resistant plant: Pennisetum americanum (L.) K. Schum during long-term atrazine exposure.–Pestic. Biochem. Phys. 133: 59–66, 2016.CrossRefGoogle Scholar
  24. Kana R., Špundová M., Ili´k P. et al.: Effect of herbicide clomazone on photosynthetic processes in primary barley (Hordeum vulgare L.) leaves.–Pestic. Biochem. Phys. 78: 161–170, 2004.CrossRefGoogle Scholar
  25. Kapusta G., Krausz R.F., Khan M., Matthews J.L.: Effect of nicosulfuron rate, adjuvant and weed size on annual weed control in corn (Zea mays).–Weed Technol. 8: 696–702, 1995.CrossRefGoogle Scholar
  26. Liu Z., Shi L., Bai L., Zhao K.: [Effects of salt stress on the contents of chlorophyll and organic solutes in Aeluropus littoralis var. sinensis Debeaux.]–J. Plant Physiol. Mol. Biol. 33: 165–172, 2007. [In Chinese]Google Scholar
  27. Macedo R.S., Lombardi A.T., Omachi C.Y., Rörig L.R.: Effects of herbicide bentazon on growth and maximum quantum yield of photosystem II in the marine diatom skeletonema costatum.–Toxicol. in Vitro 22: 716–722, 2008.CrossRefPubMedGoogle Scholar
  28. Meyer M.D., Pataky J.K., Williams M.M.: Genetic factors influencing adverse effects of mesotrione and nicosulfuron on sweet corn yield.–Agron. J. 102: 1138–1145, 2010.CrossRefGoogle Scholar
  29. Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I.: Photoinhibition of photosystem II under environmental stress.–BBA-Biochemistry 1767: 414–421, 2007.Google Scholar
  30. Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.–Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  31. Pataky J.K., Meyer J.D., Bollman J.D. et al.: Genetic basis for varied levels of injury to sweet corn hybrids from three cytochrome P450-metabolized herbicides.–J. Am. Soc. Hortic. Sci. 133: 438–447, 2008.Google Scholar
  32. Platiša J., Veljovic-Jovanovic S., Kukavica B. et al.: Induction of peroxidases and superoxide dismutases in transformed embryogenic calli of alfalfa (Medicago sativa L.).–J. Plant Physiol. 165: 895–900, 2008.CrossRefPubMedGoogle Scholar
  33. Qian H., Chen W., Sheng G.D. et al.: Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris.–Aquat. Toxicol. 88: 301–307, 2008.CrossRefPubMedGoogle Scholar
  34. Ramel F., Sulmon C., Bogard M. et al.: Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets.–BMC Plant Biol. 9: 28, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ray T.B.: Site of action of chlorsulfuron.–Plant Physiol. 75: 827–831, 1984.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Saladin G., Magné C., Clément C.: Impact of flumioxazin herbicide on growth and carbohydrate physiology in Vitis vinifera L.–Plant Cell Rep. 21: 821–827, 2003.PubMedGoogle Scholar
  37. Sonoike K.: Degradation of PsaB gene product, the reaction center subunit of photosystem I, is caused during photo inhibition of photosystem I: possible involvement of active oxygen species.–Plant Sci. 115: 157–164, 1996.CrossRefGoogle Scholar
  38. Stall W.M., Bewick T.A.: Sweet corn cultivars respond differentially to the herbicide nicosulfuron.–HortScience 27: 131–133, 1992.Google Scholar
  39. Tan W., Li Q.L., Zhai H.: Photosynthesis and growth responses of grapevine to acetochlor and fluoroglycofen.–Pestic. Biochem. Phys. 103: 210–218, 2012.CrossRefGoogle Scholar
  40. Tarchoune I., Sgherri C., Izzo R. et al.: Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization.–Plant Physiol. Bioch. 48: 772–777, 2010.CrossRefGoogle Scholar
  41. Tjus S.E., Scheller H.V., Andersson B., Møller B.L.: Active oxygen produced during selective excitation of photosystem I is damaging not only to photosystem I, but also to photosystem II.–Plant Physiol. 125: 2007–2015, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  42. van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.–Photosynth. Res. 25: 147–150, 1990.CrossRefPubMedGoogle Scholar
  43. Vass I., Styring S., Hundal T. et al.: Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promotes chlorophyll triplet formation.–P. Natl. Acad. Sci. USA 89: 1408–1412, 1992.CrossRefGoogle Scholar
  44. Wang J., Zhong X.M., Lv X.L. et al.: [Advances in research on tolerance of differential corn cultivars to the nicosulfuron.]–Chinese J. Pestic. Sci. 18: 282–290, 2016. [In Chinese]Google Scholar
  45. Wang X.F., Guan C.H., Fan Z.W., Zhen H.J.: Application and development of sulfonylurea herbicides.–Agrochemicals 50: 9–15, 2011.Google Scholar
  46. Williams B.J., Harvey R.G.: Effect of nicosulfuron timing on wild-proso millet (Panicum miliaceum) control in sweet corn (Zea mays).–Weed Technol. 14: 377–382, 2000.CrossRefGoogle Scholar
  47. Wu G.L., Cui J., Tao L., Yang H.: Fluroxypyr triggers oxidative damage by producing superoxide and hydrogen peroxide in rice (Oryza sativa).–Ecotoxicology 19: 124–132, 2010.CrossRefPubMedGoogle Scholar
  48. Wu X.X., Wu J.C., Jin G.Y. et al.: [Impact of herbicides on physiology and ecology of hydrophytes.]–Acta Ecol. Sin. 24: 2037–2042, 2004. [In Chinese]Google Scholar
  49. Xue Y.J., Tao L., Yang Z.M.: Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide.–J. Agr. Food Chem. 56: 9676–9684, 2008.CrossRefGoogle Scholar
  50. Yoon J.Y., Shin J.S., Shin D.Y. et al.: Tolerance to paraquatmediated oxidative and environmental stresses in squash (Cucurbita spp.) leaves of various ages.–Pestic. Biochem. Physiol. 99: 65–76, 2011.CrossRefGoogle Scholar
  51. Yuan X.Y, Zhang L.G., Ning N. et al.: Photosynthetic physiological response of radix isatidis (Isatis indigotica Fort.) seedlings to nicosulfuron.–PLoS ONE 9: e105310, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zheleva D., Tsonev T., Sergiev I., Karanov E.: Protective effect of exogenous polyamines against atrazine in pea plants.–J. Plant Growth Regul. 13: 203–211,1994.CrossRefGoogle Scholar
  53. Zhong X.M., Shi Z.S., Li F.H., Huang H.J.: Photosynthesis and chlorophyll fluorescence of infertile and fertile stalks of paired near-isogenic lines in maize (Zea mays L.) under shade conditions.–Photosynthetica 52: 597–603, 2014.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • J. Wang
    • 1
  • X. M. Zhong
    • 1
  • X. L. Lv
    • 1
  • Z. S. Shi
    • 1
  • F. H. Li
    • 1
  1. 1.Department of AgronomyShenyang Agricultural UniversityShenyang, LiaoningChina

Personalised recommendations