Skip to main content
Log in

Effects of GeO2 on chlorophyll fluorescence and antioxidant enzymes in apple leaves under strong light

  • Original paper
  • Published:
Photosynthetica

Abstract

In this study, we chose apple leaf as plant material and studied effects of GeO2 on operation of photosynthetic apparatus and antioxidant enzyme activities under strong light. When exogenous GeO2 concentration was below 5.0 mg L–1, maximum photochemical quantum yield of PSII and actual quantum yield of PSII photochemistry increased significantly compared with the control under irradiances of 800 and 1,600 μmol(photon) m–2 s–1. Photosynthetic electron transport chain capacity between QA–QB, QA–PSI acceptor, and QB–PSI acceptor showed a trend of rising up with 1.0, 2.0, and 5.0 mg(GeO2) L–1 and declining with 10.0 mg(GeO2) L–1. On the other hand, dissipated energy via both ΔpH and xanthophyll cycle decreased remarkably compared with the control when GeO2 concentration was below 5.0 mg L–1. Our results suggested that low concentrations of GeO2 could alleviate photoinhibition and 5.0 mg(GeO2) L–1 was the most effective. In addition, we found, owing to exogenous GeO2 treatment, that the main form of this element in apple leaves was organic germanium, which means chemical conversion of germanium happened. The organic germanium might be helpful to allay photoinhibition due to its function of scavenging free radicals and lowering accumulation of reactive oxygen species, which was proven by higher antioxidant enzyme activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABS:

absorption flux

ABS/RC:

absorption flux per reaction center of PSII

ABS/CS0 :

absorption flux per sample cross section

APX:

ascorbate peroxidase

CAT:

catalase

CS:

phenomenological energy fluxes per excited cross section

DHAR:

dehydroascorbate reductase

DI0/CS0 :

dissipated energy flux per sample cross section

DI0/RC:

dissipated energy flux per reaction center of PSII

DM:

dry mass

FM:

fresh mass

FM :

maximal fluorescence

F0 :

initial fluorescence

Fv/FM :

maximum photochemical quantum yield of PSII

FV'/FM' :

actual photochemical efficiency

FS:

steady-state fluorescence

GPX:

guaiacol peroxidase

GR:

glutathione reductase

MDHAR:

monodehydroascorbate reductase

NPQ:

nonphotochemical quenching coefficient

OJIP:

fast chlorophyll fluorescence transients

PETC:

photosynthetic electron transport chain

POD:

peroxidase

qP:

photochemical quenching coefficient

RC:

specific energy fluxes per active PSII reaction center

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TR0/CS0 :

flux of energy trapping per sample cross-section

TR0/RC:

flux of energy trapping per reaction center of PSII

VI :

relative variable fluorescence at the I-step

VJ :

relative variable fluorescence at the J-step

ΦNO :

quantum yield of non-light-induced nonphotochemical fluorescence quenching

ΦNPQ :

quantum yield of light-induced ΔpH and zeaxanthin-dependent

ΦPSII :

actual quantum yield of PSII photochemistry

References

  • Adams J.H., Thomas D.: Germanium and germanium compounds.–In: Kirk-Othmer (ed.): Encyclopedia of Chemical Technology. Pp. 540–555. Wiley, New York 1994.

    Google Scholar 

  • Apel K., Hirt H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction.–Annu. Rev. Plant Biol. 55: 373–399, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Balarinová K., Barták M., Hazdrová J. et al.: Changes in photosynthesis, pigment composition and glutathione contents in two Antarctic lichens during a light stress and recovery.–Photosynthetica 52: 538–547, 2014.

    Article  CAS  Google Scholar 

  • Bilger W., Björkman O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis.–Photosynth. Res. 25: 173–185, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Chen C., Li H., Zhang D. et al.: The role of anthocyanin in photoprotection and its relationship with the xanthophyll cycle and the antioxidant system in apple peel depends on the light conditions.–Physiol. Plantarum 149: 354–366, 2013.

    Article  CAS  Google Scholar 

  • Cheong Y.H., Kim S.U., Seo D.C. et al.: Effect of inorganic and organic germanium treatments on the growth of lettuce (Lactuca sativa).–J. Korean Soc. Appl. Bi. 52: 389–396, 2009.

    Article  CAS  Google Scholar 

  • Díaz-Vivancos P., Clemente-Moreno M.J., Rubio M. et al.: Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus.–J. Exp. Bot. 59: 2147–2160, 2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diao M., Ma L., Wang J.W.: Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system.–J. Plant Growth Regul. 33: 671–682, 2014.

    Article  CAS  Google Scholar 

  • Garg N., Manchanda G.: ROS generation in plants: boon or bane?–Plant Biosyst. 143: 81–96, 2009.

    Article  Google Scholar 

  • Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.–Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.–Plant Physiol. Bioch. 48: 909–930, 2010.

    Article  CAS  Google Scholar 

  • Goodman S.: Therapeutic effects of organic germanium.–Med. Hypotheses 26: 207–215, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Halperin S.J., Barzilay A., Carson M. et al.: Germanium accumulation and toxicity in barley.–J. Plant Nutr. 18: 1417–1426, 1995.

    Article  CAS  Google Scholar 

  • Han M.J., Kim S.U., Seo D.C. et al.: Uptake properties of germanium to vegetable plants and its effect on seed germination and on early stage growth.–Korean J. Environ. Agric. 26: 217–222, 2007.

    Article  Google Scholar 

  • Hasanuzzaman M., Fujita M.: Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings.–Biol. Trace Elem. Res. 143: 1758–1776, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Henriques F.S.: Leaf chlorophyll fluorescence: background and fundamentals for plant biologists.–Bot. Rev. 75: 249–270, 2009.

    Article  Google Scholar 

  • Jahns P., Holzwarth A.R.: The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II.–Biochim. Biophys. Acta 1817: 182–193, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan B.J., Parish W.W., Andrus G.M. et al.: Germane facts about germanium sesquioxide: I. Chemistry and anticancer properties.–J. Altern. Complem. Med. 10: 337–344, 2004.

    Article  Google Scholar 

  • Kitajima M., Butler W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone.–Biochim. Biophys. Acta 376: 105–115, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluxparameters for the determination of QA redox state and excitation fluxes.–Photosynth. Res. 79: 209–218, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light.–Funct. Plant Biol. 33: 9–30, 2006.

    Article  Google Scholar 

  • Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.–Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Li L., Zhou Z., Liang J., Lv R.: In vivo evaluation of the highirradiance effects on PSII activity in photosynthetic stems of Hexinia polydichotoma.–Photosynthetica 53: 621–624, 2015.

    Article  CAS  Google Scholar 

  • Lim J.S., Seo D.C., Park W.Y. et al.: Effects of soil texture on germanium uptake and growth in rice plant by soil application with germanium.–Korean J. Environ. Agric. 27: 245–252, 2008.

    Article  Google Scholar 

  • Liu Y., Hou L.Y., Li Q.M. et al.: The effects of exogenous antioxidant germanium (Ge) on seed germination and growth of Lycium ruthenicum Murr subjected to NaCl stress.–Environ. Technol. 37: 909–919, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto H., Syo S., Takahashi E.: Translocation and some forms of germanium in rice plants.–Soil Sci. Plant Nutr. 21: 273–279, 1975.

    Article  CAS  Google Scholar 

  • McMahon M., Regan F., Hughes H.: The determination of total germanium in real food samples including Chinese herbal remedies using graphite furnace atomic absorption spectroscopy.–Food Chem. 97: 411–417, 2006.

    Article  CAS  Google Scholar 

  • Meyer S., Saccardy-Adji K., Rizza F., Genty B.: Inhibition of photosynthesis by Colletotrichum lindemuthianum in bean leaves determined by chlorophyll fluorescence imaging.–Plant Cell Environ. 24: 947–955, 2001.

    Article  CAS  Google Scholar 

  • Munakata T., Agai S., Kuwano K. et al.: Induction of interferon production by natural killer cells by organogermanium compound Ge-132.–J. Interferon Res. 7: 69–76, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.–Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Nickel R.S., Cunningham B.A.: Improved peroxidase assay method using leuco 2,3,6-trichloroindophenol and application to comparative measurements of peroxidase catalysis.–Anal. Physiol. 172: 385–390, 1969.

    Google Scholar 

  • Rao K.V.M., Sresty T.V.S.: Antioxidant parameters in the seedlings of pigeon pea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses.–Plant Sci. 157: 113–128, 2000.

    Article  Google Scholar 

  • Rosenberg E.: Germanium: environmental occurrence, importance and speciation.–Rev. Environ. Sci. Bio. 8: 29–57, 2009.

    Article  CAS  Google Scholar 

  • Schansker G., Tóth S.Z., Strasser R.J.: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP.–Biochim. Biophys. Acta 1706: 250–261, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.–Photosynth. Res. 10: 51–62, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Seo D.C., Cheon Y.S., Park S.K. et al.: [Applications of different types of germanium compounds on rice plant growth and its Ge uptake.]–Korean J. Soil Sci. Fertil. 43: 166–173, 2010. [In Korean]

    CAS  Google Scholar 

  • Sparks J.P., Chandra S., Derry L.A. et al.: Subcellular localization of silicon and germanium in grass root and leaf tissues by SIMS: evidence for differential and active transport.–Biogeochemistry 104: 237–249, 2011.

    Article  Google Scholar 

  • Stepien P., Klobus G.: Antioxidant defense in the leaves of C3 and C4 plants under salinity stress.–Physiol. Plantarum 125: 31–40, 2005.

    Article  CAS  Google Scholar 

  • Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient.–J. Photoch. Photobio. B 104: 236–257, 2011.

    Article  CAS  Google Scholar 

  • Strasser R.J.A., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples.–In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445–483. Taylor and Francis, London 2000.

    Google Scholar 

  • Takahashi S., Murata N.: How do environmental stresses accelerate photoinhibition?–Trends Plant Sci. 13: 178–182, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Tang Z., Shi Y., Zhou J.P. et al.: Effects of an organogermanium compound on antioxidant function of vMDV-infected chickens.–Chinese J. Vet. Sci. 17: 173–176, 1997. [In Chinese]

    CAS  Google Scholar 

  • Tarakhovskaya E.R., Kang E.J., Kim K.Y., Garbary D.J.: Effect of GeO2 on embryo development and photosynthesis in Fucus vesiculosus (Phaeophyceae).–Algae 27: 125–134, 2012.

    Article  CAS  Google Scholar 

  • Yang M.K., Kim Y.G.: Protective role of germanium-132 against paraquat-indrced oxidative stress in the livers of senescence -accelerated mice.–J. Toxicol. Environ. Health A 58: 289–297, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z.X., Chen L., Ai J. et al.: Photosynthesis and activity of photosystem II in response to drought stress in Amur Grape (Vitis amurensis Rupr.).–Photosynthetica 50: 189–196, 2012.

    Article  CAS  Google Scholar 

  • Yu K.W., Murthy H.N., Jeong C.S. et al.: Organic germanium stimulated the growth of ginseng dventitious roots and ginsenoside production.–Process. Biochem. 40: 2959–2961, 2005.

    Article  CAS  Google Scholar 

  • Zai X.M., Zhu S.N., Qin P. et al.: Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress.–Photosynthetica 50: 323–328, 2012.

    Article  CAS  Google Scholar 

  • Zhang J.X., Kirkham M.B.: Antioxidant responses to drought in sunflower and sorghum seedlings.–New Phytol. 132: 361–373, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Zhang M., Tang S.U., Huang X. et al.: Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.).–Environ. Exp. Bot. 107: 39–45, 2014.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Guo.

Additional information

Acknowledgements: This work was financially supported by the National Key Technology R&D Program (2014BAD16B06) and the project of the China Agriculture Research System (CARS-28).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z.B., Wang, Y.F., Zhao, J.J. et al. Effects of GeO2 on chlorophyll fluorescence and antioxidant enzymes in apple leaves under strong light. Photosynthetica 56, 1081–1092 (2018). https://doi.org/10.1007/s11099-018-0807-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0807-7

Additional key words

Navigation