Skip to main content
Log in

Leptolyngbya CCM 4, a cyanobacterium with far-red photoacclimation from Cuatro Ciénegas Basin, México

  • Published:
Photosynthetica

Abstract

A cyanobacterium containing phycobiliproteins with far-red acclimation was isolated from Pozas Rojas, Cuatro Ciénegas, México. It was named Leptolyngbya CCM 4 after phylogenetic analysis and a description of its morphological characteristics. Leptolyngbya was grown in far-red light. Sucrose-gradient analysis of the pigments revealed two different colored bands of phycobiliproteins. A band at 60% sucrose was a phycocyanin containing phycobilisome; at 35% sucrose, a new type of phycobiliprotein absorbed at 710 nm. SDS-PAGE revealed the presence of two types of core-membrane linkers. Analysis of the hydrophobic pigments extracted from the thylakoid membranes revealed Chl a, d, and f. The ratio of Chl f/a was reversibly changed from 1:12–16 under far-red light to an undetectable concentration of Chl f under white light. Cuatro Ciénegas, a place surrounded by the desert, is a new ecosystem where a cyanobacterium, which grows in farred light, was discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP:

allophycocyanin

Car:

carboxisomes

CCA:

complementary chromatic acclimation

CNE:

clear native electrophoresis

FaRLiP:

far-red light photoacclimation

FNR:

ferredoxin-NADP+ reductase

Fr.:

fractions

LCM :

core membrane linker

PBP:

phycobiliprotein

PBS:

phycobilisome

PC:

phycocyanin

PMSF:

phenylmethylsulfonyl fluoride

REP:

repetitive sequence

RL:

red light

Th:

thylakoid membranes

WCE:

whole cell extract

WL:

white light

References

  • Adir N.: Elucidation of the molecular structures of components of the phycobilisome: Reconstructing a giant.–Photosynth. Res. 85: 15–32, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Airs R.L., Temperton B., Sambles C. et al.: Chl f and Chl d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation.–FEBS Lett. 588: 3770–3777, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Akutsu S., Fujinuma D., Furukawa H. et al.: Pigment analysis of a Chl f-containing cyanobacterium strain KC1 isolated from Lake Biwa.–Photomed. Photobiol. 33: 35–40, 2011.

    CAS  Google Scholar 

  • Alcántara-Sánchez F., Leyva-Castillo L.E., Chagolla-López A. et al.: Distribution of isoforms of ferredoxin-NADP+ reductase (FNR) in cyanobacteria in two growth conditions.–Int. J. Biochem. Cell B. 85: 123–134, 2017.

    Article  CAS  Google Scholar 

  • Alcaraz L.D., Olmedo G., Bonilla G.: The genome of Bacillus cohauilensis reveals adaptations essential for survival in the relic of an ancient marine environment.–P. Natl. Acad. Sci. USA 105: 5803–5808, 2008.

    Article  CAS  Google Scholar 

  • Anderson L., Eiserling F.A.: Asymmetrical core structure in phycobilisomes of the cyanobacterium Synechocystis sp. PCC 6701.–J. Mol. Biol. 191: 441–451, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Behrendt L., Brejnrod A., Schliep M. et al.: Chl f-driven photosynthesis in a cavernous cyanobacterium.–ISME J. 9: 2108–2111, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bryant D.A., Guglielmi G., de Marsac N.T. et al.: The structure of the cyanobacterial phycobilisomes: a model.–Arch. Microbiol. 123: 113–127, 1979.

    Article  CAS  Google Scholar 

  • Cárabez-Trejo A., Sandoval F.: A mitochondrial inner membrane preparation that sediments at 100 g.–J. Cell Biol. 62: 877–881, 1974.

    Article  Google Scholar 

  • Castenholtz R.W., Rippka R., Herdman M., Wilmotte A.: Formgenus V. Leptolyngbya Anagnostidis and Komarek 1988.–In: Boone D.R., Castenholtz R.W. (ed.): Bergey’s Manual of Systematic Bacteriology, Vol. 1. Pp. 544–546. Springer-Verlag, New York 2001.

    Google Scholar 

  • Chang L., Liu X., Li Y. et al.: Structural organization of an intact phycobilisome and its association with photosystem II.–Cell Res. 25: 726–737, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen M., Schliep M., Willows R.D. et al: A red-shifted chlorophyl.–Science 329: 1318–1319, 2010.

  • Chen M., Blankenship R.E.: Expanding the solar spectrum used by photosynthesis.–Trends Plant Sci 16: 427–431, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Chen M., Li Y., Birch D., Willows R.D.: A cyanobacterium that contains Chl far red absorbing photopigment.–FEBS Lett. 586: 3249–3254, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Chen M., Floetenmeyer M., Bibby T.S.: Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acariochloris marina.–FEBS Lett. 583: 2535–2539, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Chisholm S.W., Olson R.J., Zettler E.R. et al: A novel free living prochlorophyte abundant in the oceanic euphotic zone.–Nature 334: 340–343, 1988.

    Article  Google Scholar 

  • Couradeau E., Benzerara K., Moreira D. et al.: Prokaryotic and Eucaryotic communite structure in field and cultured microbialites from alkaline Lake Alchichica (Mexico).–PLoS ONE 6: e28767, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curtis S.E., Haselkorn R.: Isolation and sequence of the gene for large subunit of ribulose-1,5-bisphosphate carboxylase from the cyanobacterium Anabaena 7120.–P. Natl. Acad. Sci. USA 80: 1835–1839, 1983.

    Article  CAS  Google Scholar 

  • Dong C., Tang A., Zhao J. et al.: ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002.–Biochim. Biophys. Acta. 1787: 1122–1128, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Gan F., Bryant D.A.: Adaptive and acclimative responses of cyanobacteria to far-red light.–Environ. Microbiol. 17: 3450–3465, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Gan F., Shen G., Bryant D.A.: Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria.–Life 5: 4–24, 2014b.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gan F., Zhang S., Rockwell N.C. et al.: Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light.–Science 345: 1312–1317, 2014a.

    Article  PubMed  CAS  Google Scholar 

  • Glazer A.N.: Phycobilisome a macromolecular complex optimized for light energy transfer.–BBA-Bioenergetics 768: 29–51, 1984.

    CAS  Google Scholar 

  • Glazer A.N.: Light guides.–J. Biol. Chem. 264: 1–4, 1989.

    PubMed  CAS  Google Scholar 

  • Gómez-Lojero C., Pérez-Gómez B., Krogmann D.W. et al.: The tricylindrical core of the phycobilisome Arthrospira (Spirulina) maxima.–Int. J. Biochem. Cell. B. 29: 959–970, 19

    Article  Google Scholar 

  • Gómez-Lojero C., Pérez-Gómez B., Shen G. et al.: Interaction of ferredoxin:NADP+ oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp. Strain PCC 7002.–Biochemistry 42: 13800–13811, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Grossman A.R.: A molecular understanding of complementary chromatic adaptation.–Photosynth. Res. 76: 207–215, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Guglielmi G., Cohen-Bazire G., Bryant D.A.: The structure of Gloeobacter violaceus and its phycobilisome.–Arch. Microbiol. 129: 181–189, 1981.

    Article  CAS  Google Scholar 

  • Ho M.Y., Gan F., Shen G., Bryant D.A.: Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II. Characterization of phycobiliproteins produced during acclimation to far-red light.–Photosynth. Res. 131: 187–202, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Ho M.Y., Shen G., Canniffe D.P. et al.: Light-dependent Chl f synthase is a highly divergent paralog of PsbA of photosystem II.–Science 353: 886, 2016.

    Article  CAS  Google Scholar 

  • Houmard J., Capuano V., Colombano M.V. et al.: Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes.–P. Natl. Acad. Sci. USA 87: 2152–2156, 1990.

    Article  CAS  Google Scholar 

  • Hu Q., Marquardt J., Iwasaki I. et al.: Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic procaryote Acaryochloris marina.–Biochim Biophys Acta 1412: 250–261, 19

    Article  PubMed  CAS  Google Scholar 

  • Itoh S., Ohno T., Noji T. et al.: Harvesting far-red light by chl f in photosystems I and II of unicellular cyanobacterium strain KC1.–Plant Cell Physiol. 56: 2024–2034, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Jordan P., Fromme P., Witt H.T. et al.: Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution.–Nature 411: 909–917, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kehoe D.M., Gutu A.: Responding to color: the regulation of complementary chromatic adaptation.–Annu. Rev. Plant Biol. 57: 127–150, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Li Y., Scales N., Blakenship R.E. et al.: Extinction coefficient for red-shifted Chls: Chl d and Chl f.–BBA-Bioenergetics 1817: 1292–1298, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Li Y., Lin Y., Loughlin P.C., Chen M.: Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris a filamentous cyanobacterium containing Chl f.–Front. Plant Sci. 5: 67, 2014.

    PubMed  PubMed Central  Google Scholar 

  • Li Y., Lin Y., Garvey C.J. et al.: Characterization of red-shifted phycobilisomes isolated from the Chl f–containing cyanobacterium Halomicronema hongdechloris.–Biochim. Biophys. Acta 1857: 107–114, 20

    Article  PubMed  CAS  Google Scholar 

  • Liu H., Zhang H., Niedzwiedzki D.M. et al.: Phycobilisomes supply excitations to both photosystems in a megacomplexes in cyanobacteria.–Science 342: 1104–1107, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loughlin P., Lin Y., Chen M.: Chlorophyl d and Acaryochloris marina: current status.–Photosynth. Res. 116: 277–293, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Lundell D.J., Yamanaka G., Glazer A.N.: A terminal energy acceptor of the phycobilisome: the 75,000-dalton polypeptide of Synechococcus 6301 phycobilisome a new biliprotein.–J. Cell Biol. 91: 315–319, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Hernández G., Pérez-Gómez B., Krogmann D.W. et al.: Interaction of linker proteins with the phycobiliproteins in the phycobilisome substructures of Gloeobacter violaceus.–Photosynth. Res. 106: 247–261, 20

    Article  PubMed  CAS  Google Scholar 

  • Mielke S., Kiang N., Blankenship R. et al.: Efficiency of photosynthesis in a Chl d-utilizing oxygenic species.–Biochim. Biophys. Acta 1807: 1231–1236, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Mielke S.P. Kiang N.Y., Blankenship R.E., Mauzerall D.: Photosystem trap energies and spectrally-dependent energy storage efficiencies in the chl d-utilizing cyanobacterium, Acaryochloris marina.–BBA-Bioenergetics 1827: 255–265, 20

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M., Lipschultz C.A., Gantt E.: Energy flow in the phycobilisome core of Nostoc sp. (MAC): two independent terminal pigment.–BBA-Bioenergetics 852: 307–319, 1986.

    Article  Google Scholar 

  • Moore L.R., Goericke R., Chisholm S.W.: Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties.–Mar. Ecol. Prog. Ser. 116: 250–275, 1995.

    Article  Google Scholar 

  • Pérez-Gómez B., Mendoza-Hernández G., Cabellos-Avelar T. et al: A proteomic approach to the analysis of the components of the phycobilisomes from two cyanobacteria with complementary chromatic adaptation: Fremyella diplosiphon UTEX B590 and Tolypothrix PCC 7601.–Photosynth. Res. 114: 43–58, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Perkerson III R.B., Johansen J.R., Kovácik L. et al: A unique Pseudanabaenalean (cyanobacteria) genus Nodosilinean gen. nov. based on morphological and molecular data.–J. Phycol. 47: 1397–1412, 2011.

    Article  CAS  Google Scholar 

  • Reuter W., Wehrmeyer W.: Core structure in Mastigocladus laminosus phycobilisomes: II the central part of the tricylindrical core–APCM–contain the anchor polypeptide and no allophycocyanin B.–Arch. Microbiol. 153: 111–117, 1990.

    Article  CAS  Google Scholar 

  • Schägger H., von Jagow G.: Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa.–Anal. Biochem. 166: 368–379, 1987.

    Article  PubMed  Google Scholar 

  • Sidler W.A. Phycobilisome a phycobiliprotein Structures.–In: Bryant D.A. (ed.): The Molecular Biology of Cyanobacteria. Pp. 139–216. Kluwer Academic Publishers, Dordrecht 1994.

    Chapter  Google Scholar 

  • Schluchter W.M., Bryant D.A.: Molecular characterization of ferredoxin NADP+ oxidoreductase in cyanobacteria: cloning and sequence of the petH gene of Synechococcus sp. PCC 7002 and studies in the gene product.–Biochemistry 31: 3092–3102, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Souza V., Eguiarte L.E., Siefert J., Elser J.: Microbial endemism: does phosphorus limitation enhance speciation?–Nat. Rev. Microbiol. 6: 559–564, 2008.

    Article  PubMed  Google Scholar 

  • Souza V., Siefert J.L., Escalante A.E. et al.: The Cuatrociénegas Basin in Coahuila, México: An astrobiologial precambrian park.–Astrobiology 12: 641–647, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stackebrandt E., Goebel B.M.: Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology.–Int. J. Syst. Bacteriol. 44: 846–849, 1994.

    Article  CAS  Google Scholar 

  • Stanier G. (Cohen-Bazire): Fine structure of cyanobacteria.–Methods Enzymol. 167: 157–172, 1988.

    Article  Google Scholar 

  • Stevens Jr S.E., Pat Patterson C.O., Myers J.: The production of hydrogen peroxide by blue-green algae: A survey.–J. Phycol. 9: 427–430, 1973.

    CAS  Google Scholar 

  • Tandeau de Marsac N., Houmard J.: Complementary chromatic adaptation: Physiological conditions and action spectra.–Methods Enzymol. 167: 318–328, 1988.

    Article  CAS  Google Scholar 

  • Taton A., Grubisic S., Brambilla E. et al.: Cyanobacterial diversity in natural and artificial microbial mat of Lake Fryxell (Mc Murdo Dry Valleys Antarctica): A morphological and molecular approach.–Appl. Environ. Microbiol. 69: 5157–5169, 2003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Umena Y., Kawakami K., Shen J.R., Kamiya N.: Crystal structure of oxygen evolving photosystem II at a resolution of 1.2 A.–Nature 473: 55–60, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Wittig I., Karas M., Schägger H.: High resolution clear native electrophoresis for In-gel functional assays and fluorescence studies of membrane protein complexes.–Mol. Cell. Proteomics 6: 1215–1225, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka G., Glazer A.N., Williams R.C.: Cyanobacterial phycobilisomes. Characterization of the phycobilisomes of Synechococcus sp. 6301.–J. Biol. Chem. 253: 8303–8310, 1978.

    PubMed  CAS  Google Scholar 

  • Zhang Z., Schwartz S., Wagner L., Miller W.: A greedy algorithm for aligning DNA sequences.–J. Comput. Biol. 7: 203–214, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Zuker M.: Mfold web server for nucleic acid folding and hybridization prediction.–Nucleic Acids Res. 31: 3406–3415, 2003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gómez-Lojero.

Additional information

Acknowledgments: This paper is dedicated to the memory of Dr. David W Krogmann: professor, colleague, and friend. CGL thanks Dr. Valeria Souza for the opportunity to be at Cuatro Ciénegas in May, 2012, where the mat sample was obtained. The authors wish to thank to Mr. Jorge Zarco Mendoza for his technical expertise, Dr. Laura Ongay and Biologist Ma. Guadalupe Codiz of the Unidad de Biología Molecular, Instituto de Fisiología Celular UNAM for DNA sequencing, and Mrs. Leticia Gómez-Sandoval for her secretarial assistance.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Lojero, C., Leyva-Castillo, L.E., Herrera-Salgado, P. et al. Leptolyngbya CCM 4, a cyanobacterium with far-red photoacclimation from Cuatro Ciénegas Basin, México. Photosynthetica 56, 342–353 (2018). https://doi.org/10.1007/s11099-018-0774-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0774-z

Additional key words

Navigation