Advertisement

Photosynthetica

, Volume 56, Issue 1, pp 366–381 | Cite as

Photosynthesis and salinity: are these mutually exclusive?

  • S. Wungrampha
  • R. Joshi
  • S. L. Singla-Pareek
  • A. Pareek
Review

Abstract

Photosynthesis has walked into the path of evolution for over millions of years. Organisms relying directly on photosynthesis, when subjected to adverse environments for a long duration, experience retardation in their growth and development. Salinity stress is perceived as one of the major threats to agriculture as it can cause an irreversible damage to the photosynthetic apparatus at any developmental stage of the plant. However, halophytes, a special category of plants, carry out all life processes, including photosynthesis, without showing any compromise even under high saline environments. The fascinating mechanism for Na+ exclusion from cytosol besides retaining photosynthetic efficiency in halophytes can provide a valuable genetic resource for improving salt stress tolerance in glycophytes. Understanding how plants stabilize their photosynthetic machinery and maintain the carbon balance under saline conditions can be extremely useful in designing crops for saline and dry lands.

Additional key words

adaptation chlorophyll glycophytes halophytes photosynthesis salinity 

Abbreviations

CAM

Crassulacean acid metabolism

CBB

Calvin–Benson–Bassham cycle

CP

chloroplast protrusions

GB

glycine betaine

G3P

glyceraldehyde-3-phosphate

PA

polyamines

3PGA

3-phosphoglycerate

PEP

phosphoenolpyruvate

PRC

photochemical reaction centre

PTOX

plastid terminal oxidase

Put

putrescine

RC

reaction centre

RuBP

ribulose-1,5- bisphosphate

SQDG

sulphoquinovosyldiacylglycerol

Spm

spermine

Spd

spermidine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2017_763_MOESM1_ESM.pdf (241 kb)
Supplementary material, approximately 241 KB.

References

  1. Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A.: Plant responses to salt stress: Adaptive mechanisms.–Agronomy 7: 18, 2017.CrossRefGoogle Scholar
  2. Adiga P.R., Prasad G.L.: Biosynthesis and regulation of polyamines in higher plants.–In: Galston A.W., Smith T.A. (ed.): Polyamines in Plants. Pp. 3–24. Springer, Dordrecht 1985.CrossRefGoogle Scholar
  3. Ahmadizadeh M., Vispo N.A., Calapit-Palao C.D. et al.: Reproductive stage salinity tolerance in rice: a complex trait to phenotype.–Indian J. Plant Physi. 21: 528–356, 2016CrossRefGoogle Scholar
  4. Akhani H., Trimborn P., Ziegler H.: Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance.–Plant Syst. Evol. 206: 187–221, 1997.CrossRefGoogle Scholar
  5. Al-Hosani S., Oudah M.M., Henschel A. et al.: Global transcriptome analysis of salt acclimated Prochlorococcus AS9601.–Microbiol. Res. 176: 21–28, 2015.PubMedCrossRefGoogle Scholar
  6. Allen J.F., Williams J.C.: Photosynthesis reaction centres.–FEBS Lett. 438: 5–9, 1998.PubMedCrossRefGoogle Scholar
  7. Anwar K., Lakra N., Singla-Pareek S.L. et al.: Investigating abiotic stress response machinery in plants: The metabolomic approaches.–In: Dagar J.C., Sharma P.C., Sharma D.K. et al. (ed.): Innovative Saline Agriculture. Pp. 303–319. Springer, New Delhi 2016.CrossRefGoogle Scholar
  8. Arnon D.I.: The light reactions of photosynthesis.–P. Natl. Acad. Sci. USA 69: 2883–2892, 1971.CrossRefGoogle Scholar
  9. Arp W.J.: Effects of source-sink relations on photosynthetic acclimation to elevated CO2.–Plant Cell Environ. 14: 869–875, 1991.CrossRefGoogle Scholar
  10. Ashraf M., Hameed M., Arshad M. et al.: Salt tolerance of some potential forage grasses from Cholistan desert of Pakistan.–In: Khan M.A., Weber D.J (ed.): Ecophysiol. High Salinity Tolerance Plants. Pp. 31–54. Springer, Dordrecht 2006.CrossRefGoogle Scholar
  11. Aslam R., Bostan N., Maria M. et al: A critical review on halophytes: salt tolerant plants. — J. Med. Plants Res. 5: 7108–18, 2011.Google Scholar
  12. Asrar H., Hussain T., Hadi S.M. et al.: Salinity induced changes in light harvesting and carbon assimilating complexes of Desmostachya bipinnata (L.) Staph.–Environ. Exp. Bot. 135: 86–95, 2017.CrossRefGoogle Scholar
  13. Athar H.U.R., Zafar Z.U., Ashraf M.: Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators.–J. Agron. Crop Sci. 201: 428–442, 2015.CrossRefGoogle Scholar
  14. Bassham J.A., Benson A.A., Calvin M.: The path of carbon in photosynthesis–J. Biol. Chem. 185: 781–787, 1950.PubMedGoogle Scholar
  15. Bassham J.A.: Mapping the carbon reduction cycle: a personal retrospective.–Photosynth. Res. 76: 35–52, 2003.PubMedCrossRefGoogle Scholar
  16. Bastías E., González-Moro M.B., González-Murua C.: Interactive effects of excess boron and salinity on histological and ultrastructural leaves of Zea mays amylacea from the Lluta Valley (Arica-Chile).–Cienc. Investig. Agrar. 40: 581–595, 2013.CrossRefGoogle Scholar
  17. Belkhodja R., Morales F., Abadia A. et al.: Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.).–Plant Physiol. 104: 667–673, 1994.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ben-Shem A., Frolow F., Nelson N.: Crystal structure of plant photosystem I.–Nature. 426: 630–635, 2003.PubMedCrossRefGoogle Scholar
  19. Biel K., Fomina, I.: Benson-Bassham-Calvin cycle contribution to the organic life on our planet.–Photosynthetica 53: 161–167, 2015.CrossRefGoogle Scholar
  20. Bose J., Shabala L., Pottosin I. et al.: Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley.–Plant Cell Environ. 37: 589–600, 2014PubMedCrossRefGoogle Scholar
  21. Briat J.F., Dubos C., Gaymard F.: Iron nutrition, biomass production, and plant product quality.–Trends Plant Sci. 20: 33–40, 2015.PubMedCrossRefGoogle Scholar
  22. Brugnoli E., Lauteri M.: Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes.–Plant Physiol. 95: 628–635, 1991.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Busch F.A., Sage R.F.: The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong RuBisCO control above the thermal optimum.–New Phytol. 213: 1036–1051, 2017.PubMedCrossRefGoogle Scholar
  24. Cassaniti C., Leonardi C., Flowers T.J.: The effects of sodium chloride on ornamental shrubs.–Sci. Hortic.-Amsterdam 122: 586–593, 2009.CrossRefGoogle Scholar
  25. Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell.–Ann. Bot.-London 103: 551–560, 2009.CrossRefGoogle Scholar
  26. Chen M.: Chlorophyll modifications and their spectral extension in oxygenic photosynthesis.–Annu. Rev. Biochem. 83: 317–340, 2014.PubMedCrossRefGoogle Scholar
  27. Clijsters H., van Assche F.: Inhibition of photosynthesis by heavy metals.–Photosynth. Res. 7: 31–40, 1985 Das P., Nutan K.K., Singla-Pareek S.L. et al.: Understanding salinity responses and adopting’ omics-based’ approaches to generate salinity tolerant cultivars of rice.–Front. Plant Sci. 6: 712, 2015a.Google Scholar
  28. Das P., Nutan K.K., Singla-Pareek S.L. et al.: Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles.–Front. Environ. Sci. 2: 70, 2015b.CrossRefGoogle Scholar
  29. Debez A., Braun H.P., Pich A. et al.: Proteomic and physiological responses of the halophyte Cakile maritima to moderate salinity at the germinative and vegetative stages.–J. Proteomics. 75: 5667–5694, 2012.PubMedCrossRefGoogle Scholar
  30. Deinlein U., Stephan A.B., Horie T. et al.: Plant salt-tolerance mechanisms.–Trends Plant Sci. 19: 371–379, 2014.Google Scholar
  31. Delfine S., Alvino A., Zacchini M. et al.: Consequences of salt stress on conductance to CO2 diffusion, RuBisCO characteristics and anatomy of spinach leaves.–Aust. J. Plant Physiol. 25: 395–402, 1998.CrossRefGoogle Scholar
  32. Demetriou G., Neonaki C., Navakoudis E. et al.: Salt stress impact on the molecular structure and function of the photosynthetic apparatus-the protective role of polyamines.–BBA-Bioenergetics 1767: 272–280, 2007.PubMedCrossRefGoogle Scholar
  33. De-Paoli H.C., Borland A.M., Tuskan G.A. et al.: Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities.–J. Exp. Bot. 65: 3381–3393, 2014.CrossRefGoogle Scholar
  34. De Souza A.P., Gaspar M., Da-Silva E.A. et al.: Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane.–Plant Cell Environ. 31: 1116–1127, 2008.PubMedCrossRefGoogle Scholar
  35. Diray-Arce J., Clement M., Gul B. et al.: Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance.–BMC Genomics 16: 353, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dong C., Fu Y., Liu G. et al.: Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS.–Adv. Space Res. 53: 1557–1566, 2014.CrossRefGoogle Scholar
  37. Duarte B., Santos D., Marques J.C. et al.: Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback–implications for resilience in climate change.–Plant Physiol. Bioch. 67: 178–188, 2013.CrossRefGoogle Scholar
  38. Dyachenko O.V., Zakharchenko N.S., Shevchuk T.V. et al.: Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress.–Biochemistry-Moscow+ 71: 461–465, 2006.PubMedCrossRefGoogle Scholar
  39. Farooq S., Azam F.: A new allopolyploid wheat for stressed lands and poverty alleviation.–Field Crop Res. 100: 369–373, 2007.CrossRefGoogle Scholar
  40. Fleming I.: Absolute configuration and the structure of chlorophyll.–Nature 216: 151–152, 1967.CrossRefGoogle Scholar
  41. Forkel M., Carvalhais N., Rödenbeck C. et al.: Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems.–Science 351: 696–699, 2016.PubMedCrossRefGoogle Scholar
  42. Ghosh A., Pareek A., Sopory S.K. et al: A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool.–Plant J. 80: 93–105, 2014.PubMedCrossRefGoogle Scholar
  43. Golldack D., Li C., Mohan H. et al.: Tolerance to drought and salt stress in plants: Unraveling the signaling networks.–Front. Plant Sci. 5: 151, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Govindjee, Allen J.F., Beatty J.T.: Celebrating the millennium: historical highlights of Photosynthesis research, Part 3.–Photosynth. Res. 80: 1–13, 2004.PubMedCrossRefGoogle Scholar
  45. Govindjee, Beatty J.T., Gest H.: Celebrating the millennium: historical highlights of Photosynthesis research, Part 2.–Photosynth. Res. 76: 1–11, 2003.CrossRefGoogle Scholar
  46. Govindjee, Krogmann D.: Discoveries in oxygenic photosynthesis (1727–2003): a perspective.–Photosynth. Res. 80: 15–57, 2004.PubMedCrossRefGoogle Scholar
  47. Govindjee, Veit W.: The Z-scheme of electron transport in photosynthesis. http://www.life.illinois.edu/govindjee/ZScheme. html (accessed continuously since August 2010), 2010.Google Scholar
  48. Gupta B., Huang B.: Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization.–Int. J. Genom. 2014: 701596, 2014.Google Scholar
  49. Gupta B.K., Sahoo K.K., Ghosh A. et al.: Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice.–Plant Cell Environ. DOI: 10.1111/pce.12968, 2017.Google Scholar
  50. Gupta B.K., Tripathi A.K., Joshi R. et al.: Designing climatesmart future crops employing signal transduction components.–In: Pandey G.K. (ed.): Elucidation of Abiotic Stress Signaling in Plants: Functional Genomics Perspectives, Vol 2. Pp. 393–413. Springer, New York 2015.CrossRefGoogle Scholar
  51. Hayward H.E., Long E.M.: Anatomical and physiological responses of the tomato to varying concentrations of sodium chloride sodium sulphate, and nutrient solutions.–Bot. Gaz. 102: 437–462, 1941.CrossRefGoogle Scholar
  52. Hernandez P., Müller M., Appel R.D.: Automated protein identification by tandem mass spectrometry: Issues and strategies.–Mass Spectrom. Rev. 25: 235–254, 2006.PubMedCrossRefGoogle Scholar
  53. Hill R., Bendall F.: Function of the two cytochrome components in chloroplasts: A working hypothesis.–Nature 186: 136–137, 1960.CrossRefGoogle Scholar
  54. Hoang T.M., Tran T.N., Nguyen T.K. et al.: Improvement of salinity stress tolerance in rice: challenges and opportunities.–Agronomy 6: 54, 2016.CrossRefGoogle Scholar
  55. Horgan R.P., Kenny L.C.: SAC review: ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics.–Obstet. Gynecol. 13: 189–195, 2011.CrossRefGoogle Scholar
  56. Hügler M., Sievert S.M.: Beyond the Calvin cycle: autotrophic carbon fixation in the ocean.–Annu. Rev. Mar. Sci. 3: 261–89, 2011.CrossRefGoogle Scholar
  57. Ishida H., Yoshimoto K., Izumi M. et al.: Mobilization of RuBisCO and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process.–Plant Physiol. 148: 142–155, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ivanova T.V., Maiorova O.V., Orlova Y.V. et al.: Cell ultrastructure and fatty acid composition of lipids in vegetative organs of Chenopodium album L. under salt stress conditions.–Russ. J. Plant Physl+ 63: 763–775, 2016.CrossRefGoogle Scholar
  59. Jacob T., Ritchie S., Assmann S.M., Gilroy S.: Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity.–P. Natl. Acad. Sci. USA 96: 12192–12197, 1999.CrossRefGoogle Scholar
  60. Jha B. Agarwal P.K., Reddy P.S. et al.: Identification of saltinduced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis.–Genes Genet. Syst. 84: 111–120, 2009.PubMedCrossRefGoogle Scholar
  61. Joshi R., Karan R., Singla-Pareek S.L. et al.: Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress.–Plant Cell Rep. 35: 27–41, 2016.PubMedCrossRefGoogle Scholar
  62. Joshi R., Prashat R., Sharma P.C. et al.: Physiological characterization of gamma-ray induced mutant population of rice to facilitate biomass and yield improvement under salinity stress.–Ind. J. Plant Physiol. 21: 545–555, 2016.CrossRefGoogle Scholar
  63. Joshi R., Ramanarao M.V., Bedre R. et al.: Salt adaptation mechanisms of halophytes: Improvement of salt tolerance in crop plants.–In: Pandey G.K. (ed.): Elucidation of Abiotic Stress Signaling in Plants: Functional Genomics Perspectives, vol 2. Pp. 243–280. Springer, New York 2015.CrossRefGoogle Scholar
  64. Joshi R., Sahoo K.K., Tripathi A.K. et al.: Knockdown of an inflorescence meristem-specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition.–Plant Cell Environ. DOI: 10.1111/pce.12947, 2017.Google Scholar
  65. Juneau P., Barnett A., Méléder V. et al.: Combined effect of high light and high salinity on the regulation of photosynthesis in three diatom species belonging to the main growth forms of intertidal flat inhabiting microphytobenthos.–J. Exp. Mar. Biol. Ecol. 463: 95–104, 2015.CrossRefGoogle Scholar
  66. Kale R., Hebert A.E., Frankel L.K. et al.: Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II.–P. Natl. Acad. Sci. USA 14: 2988–2993, 2017.CrossRefGoogle Scholar
  67. Karan R., Singla-Pareek S.L., Pareek A.: Histidine kinase and response regulator genes as they relate to salinity tolerance in rice.–Funct. Integr. Genomic. 9: 411–417, 2009.CrossRefGoogle Scholar
  68. Kebeish R., Niessen M., Thiruveedhi K. et al.: Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana.–Nat. Biotechnol. 25: 593–599, 2007.PubMedCrossRefGoogle Scholar
  69. Koyro H.W., Hussain T., Huchzermeyer B. et al.: Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations.–Environ. Exp. Bot. 91: 22–29, 2013.CrossRefGoogle Scholar
  70. Koyro H.W.: Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.).–Environ. Exp. Bot. 56: 136–146, 2006.CrossRefGoogle Scholar
  71. Krupinska K.: Fate and activities of plastids during leaf senescence.–In: Wise R.R., Hoober J.K. (ed.): The Structure and Function of Plastids. Pp. 433–449. Springer, Dordrecht 2006.CrossRefGoogle Scholar
  72. Kumar G., Kushwaha H.R., Panjabi-Sabharwal V. et al.: Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging.–BMC Plant Biol. 12: 107, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kumar G., Purty R.S., Sharma M.P. et al.: Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathwayrelated genes.–J. Plant Physiol. 166: 507–520, 2009.PubMedCrossRefGoogle Scholar
  74. Kumar R., Mustafiz A., Sahoo K.K. et al.: Functional screening of cDNA library from a salt tolerant rice genotype Pokkali identifies mannose-1-phosphate guanyl transferase gene (OsMPG1) as a key member of salinity stress response.–Plant Mol. Biol. 79: 555–568, 2012.Google Scholar
  75. Kumari S., Roy S., Singh P. et al.: Cyclophilins: proteins in search of function.–Plant Signal. Behav. 8: e22734, 2013.PubMedCrossRefGoogle Scholar
  76. Kumari S., Sabharwal V.P.N., Kushwaha H.R. et al.: Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L.–Funct. Integr. Genom. 9: 109–123, 2009b.CrossRefGoogle Scholar
  77. Kumari S., Singh P., Singla-Pareek S.L. et al.: Heterologous expression of a salinity and developmentally regulated rice cyclophilin gene (OsCyp2) in E. coli and S. cerevisiae confers tolerance towards multiple abiotic stresses.–Mol. Biotechnol. 42: 195–204, 2009a.PubMedCrossRefGoogle Scholar
  78. Lakra N., Kaur C., Anwar K. et al.: Proteomics of contrasting rice genotypes: Identification of potential targets for raising crops for saline environment.–Plant Cell Environ. DOI: 10.1111/pce.12946, 2017.Google Scholar
  79. Lakra N., Nutan K.K., Das P. et al: A nuclear-localized histonegene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery.–J. Plant Physiol. 176: 36–46, 2015.PubMedCrossRefGoogle Scholar
  80. Lazcano A., Miller S.L.: The origin and early evolution of life: Prebiotic chemistry, the Pre-RNA world, and time.–Cell 85: 793–798, 1996.PubMedCrossRefGoogle Scholar
  81. Lee M.H., Cho E.J., Wi S.G. et al.: Divergences in morphological changes and antioxidant responses in salt-tolerant and saltsensitive rice seedlings after salt stress.–Plant Physiol. Bioch. 70: 325–35, 2013.CrossRefGoogle Scholar
  82. Leegood R.C.: A welcome diversion from photorespiration.–Nat. Biotechnol. 25: 539–540, 2007.PubMedCrossRefGoogle Scholar
  83. Leverenz J.W.: Chlorophyll content and the light response curve of shade-adapted conifer needles.–Physiol. Plantarum 71: 20–29, 1987.CrossRefGoogle Scholar
  84. Liu X., Fan Y., Mak M. et al.: QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley.–BMC Genomics. 18: 9, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Males J, Griffiths H.: Stomatal biology of CAM plants.–Plant Physiol. 174: 550–560, 2017.Google Scholar
  86. Mano J., Endo T., Miyake C.: How do photosynthetic organisms manage light stress? A tribute to the late Professor Kozi Asada.–Plant Cell Physiol. 57: 1351–1353, 2016.PubMedGoogle Scholar
  87. Maríálová L., Vítámvás P., Hynek R. et al.: Proteomic response of Hordeum vulgare cv. Tadmor and Hordeum marinum to salinity stress: similarities and differences between a glycophyte and a halophyte.–Front. Plant Sci. 7: 1154, 2016.Google Scholar
  88. Mastrobuoni G, Irgang S, Pietzke M. et al.: Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii.–BMC Genomics 13: 215, 2012PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mathur S., Agrawal D., Jajoo A.: Photosynthesis: response to high temperature stress.–J. Photoch. Photobio. B 137: 116–126, 2014.CrossRefGoogle Scholar
  90. McLaughlin S.B., McConathy R.K., Duvick D. et al.: Effects of chronic air pollution stress on photosynthesis, carbon allocation, and growth of white Pine trees.–Forest Sci. 28: 60–70, 1982.Google Scholar
  91. Meinzer F.C., Zhu J.: Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress.–Funct. Plant Biol. 26: 79–86, 1999.Google Scholar
  92. Meiri A., Poljakoff-Mayber A.: The effect of chlorine salinity on growth of bean leaves in thickness and in area.–Israel J. Bot. 16: 115–123, 1967.Google Scholar
  93. Meng F., Luo Q., Wang Q. et al.: Physiological and proteomic responses to salt stress in chloroplasts of diploid and tetraploid black locust (Robinia pseudoacacia L.).–Sci. Rep. 6: 23098, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Meng H.B., Jiang S.S., Hua S.J. et al.: Comparison between a tetraploid turnip and its diploid progenitor (Brassica rapa L.): the adaptation to salinity stress.–Agr. Sci. China 10: 363–375, 2011.CrossRefGoogle Scholar
  95. Ming R., [ptVan Buren R., Wai C.M. et al.: The pineapple genome and the evolution of CAM photosynthesis.–Nat. Genet. 47: 1435–1442, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mohapatra P.K., Singh N.R.: Teaching the Z-Scheme of electron transport in photosynthesis: a perspective.–Photosynth. Res. 123: 105–114, 2015.PubMedCrossRefGoogle Scholar
  97. Moinuddin M., Gulzar S., Hameed A. et al.: Differences in photosynthetic syndromes of four halophytic marsh grasses in Pakistan.–Photosynth. Res. 131: 51–64, 2017.PubMedCrossRefGoogle Scholar
  98. Müller M., Santarius K.A.: Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity.–Plant Physiol. 62: 326–329, 1978.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Munns R., Gilliham M.: Salinity tolerance of crops–what is the cost?–New Phytol. 208: 668–673, 2015.PubMedCrossRefGoogle Scholar
  100. Murata N., Takahashi S., Nishiyama Y. et al.: Photoinhibition of photosystem II under environmental stress.–BBABioenergetics 1767: 414–421, 2007.CrossRefGoogle Scholar
  101. Nawaz I., Iqbal M., Hakvoort H.W. et al.: Expression levels and promoter activities of candidate salt tolerance genes in halophytic and glycophytic Brassicaceae.–Environ. Exp. Bot. 99: 59–66, 2014.CrossRefGoogle Scholar
  102. Neale P.J., Melis A.: Salinity-stress enhances photoinhibition of photosynthesis in Chlamydomonas reinhardtii.–J. Plant Physiol. 134: 619–622, 1989.CrossRefGoogle Scholar
  103. Neelam S., Subramanyam R.: Alteration of photochemistry and protein degradation of photosystem II from Chlamydomonas reinhardtii under high salt grown cells.–J. Photoch. Photobio. B 124: 63–70, 2013.CrossRefGoogle Scholar
  104. Negrão S., Schmöckel S.M., Tester M.: Evaluating physiological responses of plants to salinity stress.–Ann. Bot.-London 119: 1–11, 2017.CrossRefGoogle Scholar
  105. Nieva F.J.J., Castellanos E.M., Figueroa M.E. et al.: Gas exchange and chlorophyll fluorescence of C3 and C4 saltmarsh species.–Photosynthetica 36: 397–406, 1999.CrossRefGoogle Scholar
  106. Nongpiur R., Soni P., Karan R. et al.: Histidine kinases in plants: cross talk between hormone and stress responses.–Plant Signal. Behav. 7: 1230–1237, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Nongpiur R.C., Singla-Pareek S.L., Pareek A.: Genomics approaches for improving salinity stress tolerance in crop plants.–Curr. Genomics 17: 343–357, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Oukarroum A., Bussotti F., Goltsev V. et al.: Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress.–Environ. Exp. Bot. 109: 80–88, 2015.CrossRefGoogle Scholar
  109. Ozfidan-Konakci C., Uzilday B., Ozgur R. et al.: Halophytes as a source of salt tolerance genes and mechanisms: a case study for the Salt Lake area, Turkey.–Funct. Plant Biol. 43: 575–589, 2016.CrossRefGoogle Scholar
  110. Paredes M., Quiles M.J.: The effects of cold stress on photosynthesis in Hibiscus plants.–PLoS ONE 10: e0137472, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Pareek A., Singla S.L., Grover A.: Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera.–Plant Mol. Biol. 29: 293–301, 1995.PubMedCrossRefGoogle Scholar
  112. Pareek A., Singla-Pareek S.L., Grover A.: Proteins alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice (Oryza sativa L.) cultivar.–Curr. Sci. 75: 1023–1035, 1998.Google Scholar
  113. Pareek A., Singla S.L., Grover A.: Short-term salinity and high temperature stress-associated ultrastructural alterations in young leaf cells of Oryza sativa L.–Ann. Bot.-London 80: 629–639, 1997.CrossRefGoogle Scholar
  114. Pareek A., Sopory S.K., Bohnert H.J. et al.: Abiotic Stress Adaptation in Plants. Pp. 526. Springer, Dordrecht 2010.CrossRefGoogle Scholar
  115. Percey W.J., McMinn A., Bose J. et al.: Salinity effects on chloroplast PSII performance in glycophytes and halophytes.–Funct. Plant Biol. 43: 1003–1015, 2016.CrossRefGoogle Scholar
  116. Poljakoff-Mayber A.: Morphological and anatomical changes in plants as a response to salinity stress.–In: Poljakoff-Mayber A., Gale J. (ed.): Plants in Saline Environments. Pp. 97–117. Springer, Berlin–Heidelberg 1975.CrossRefGoogle Scholar
  117. Porcel R., Redondo-Gómez S., Mateos-Naranjo E. et al.: Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces nonphotochemical quenching in rice plants subjected to salt stress.–J. Plant Physiol. 185: 75–83, 2015.PubMedCrossRefGoogle Scholar
  118. Pospíšil P.: Production of reactive oxygen species by photosystem II.–BBA-Bioenergetics 1787: 1151–1160, 2009.PubMedCrossRefGoogle Scholar
  119. Prins A., van Heerden P.D.R., Olmos E. et al.: Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) vesicular bodies.–J. Exp. Bot. 59: 1935–1950, 2008.PubMedCrossRefGoogle Scholar
  120. Purty R.S., Kumar G., Singla-Pareek S.L. et al.: Towards salinity tolerance in Brassica: an overview.–Physiol. Mol. Biol. Plants 14: 39–49, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Qadir M., Quillérou E., Nangia V. et al.: Economics of saltinduced land degradation and restoration.–Nat. Resour. Forum 38: 282–295, 2014.CrossRefGoogle Scholar
  122. Rabhi M., Castagna A., Remorini D. et al.: Photosynthetic responses to salinity in two obligate halophytes: Sesuvium portulacastrum and Tecticornia indica.–S. Afr. J. Bot. 79: 39–47, 2012.CrossRefGoogle Scholar
  123. Rabhi M., Hafsi C., Lakhdar A. et al.: Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions.–Afr. J. Eco. 47: 463–468, 2009.CrossRefGoogle Scholar
  124. Rahman H., Jagadeeshselva N., Valarmathi R. et al.: Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing.–Plant Mol. Biol. 85: 485–503, 2014.PubMedCrossRefGoogle Scholar
  125. Raines C.A.: The Calvin cycle revisited.–Photosynth. Res. 75: 1–10, 2003.PubMedCrossRefGoogle Scholar
  126. Ramani B., Zorn H., Papenbrock J.: Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations.–Z. Naturforsch. 59: 835–842, 2004.CrossRefGoogle Scholar
  127. Rangani J., Parida A.K., Panda A. et al.: Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative dand confer salt tolerance in an extreme halophyte Salvadora persica L.–Front. Plant Sci. 7: 50, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Reddy A.R., Chaitanya K.V., Vivekanandan M.: Droughtinduced responses of photosynthesis and antioxidant metabolism in higher plants.–J. Plant Physiol. 161: 1189–1202, 2004.CrossRefGoogle Scholar
  129. Redondo-Gómez S., Mateos-Naranjo E., Cambrolle J. et al.: Carry-over of differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens.–Ann. Bot.-London 102: 103–112, 2008.CrossRefGoogle Scholar
  130. Sage R.F.: Photosynthetic efficiency and carbon concentration in terrestrial plants: the C4 and CAM solutions.–J. Exp. Bot. 65: 3323–3325, 2014.PubMedCrossRefGoogle Scholar
  131. Samira M., Hichem H., Boughalleb F. et al.: Effect of salinitylight interaction on the activity of photosystem II of excised leaves of maize.–Afr. Crop Sci. J. 23: 343–354, 2015.CrossRefGoogle Scholar
  132. Sang T., Shan X., Li B. et al.: Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings.–Plant Cell Rep. 35: 1769–1782, 2016.PubMedCrossRefGoogle Scholar
  133. Schieber M., Chandel N.S.: ROS function in redox signaling and oxidative stress.–Curr. Biol. 24: R453–R462, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Seepratoomrosh J., Pokethitiyook P., Meetam M. et al.: The effect of light stress and other culture conditions on photoinhibition and growth of Dunaliella tertiolecta.–Appl. Biochem. Biotech. 178: 396–407, 2016.CrossRefGoogle Scholar
  135. Seki M., Ishida J., Narusaka M. et al.: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.–Plant J. 31: 279–292, 2002.PubMedCrossRefGoogle Scholar
  136. Senge M.O., Ryan A.A., Letchford K.A. et al.: Chlorophylls, symmetry, chirality, and photosynthesis.–Symmetry 6: 781–843, 2014.CrossRefGoogle Scholar
  137. Sengupta S., Majumder A.L.: Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach.–Planta 229: 911–929, 2009.PubMedCrossRefGoogle Scholar
  138. Shabala S., Cuin T.A., Prismall L. et al.: Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress.–Planta 227: 189–197, 2007.PubMedCrossRefGoogle Scholar
  139. Shabala S., Mackay A.: Ion transport in halophytes.–Adv. Bot. Res. 57: 151–187, 2011.CrossRefGoogle Scholar
  140. Shabala S.: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops.–Ann. Bot.-London 112: 1209–1221, 2013.CrossRefGoogle Scholar
  141. Sharan A., Soni P., Nongpiur R.C. et al.: Mapping the ‘Two component system’ network in rice.–Sci. Rep. 7: 9287, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Sharma P., Jha A.B., Dubey R.S. et al.: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.–J. Bot. 2012: 217037, 2012.Google Scholar
  143. Sharma R., Mishra M., Gupta B. et al.: De novo assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of Brassica juncea.–PLoS ONE 10: e0126783, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Shevela D., Björn L.O., Govindjee.: Evolution of the Z-scheme of photosynthesis: a perspective.–Photosynth. Res. 133: 5–15, 2017.PubMedCrossRefGoogle Scholar
  145. Shu S., Guo S.R., Sun J. et al.: Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine.–Physiol. Plantarum 146: 285–296, 2012CrossRefGoogle Scholar
  146. Singh A.K., Kumar R., Pareek A. et al.: Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco.–Mol. Biotechnol. 52: 205–216, 2012.PubMedCrossRefGoogle Scholar
  147. Singla-Pareek S.L., Yadav S.K., Pareek A. et al.: Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II.–Transgenic Res. 17: 171–180, 2008.PubMedCrossRefGoogle Scholar
  148. Sobhanian H., Motamed N., Jazii F.R. et al.: Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant.–J. Proteome Res. 9: 2882–2897, 2010.PubMedCrossRefGoogle Scholar
  149. Soda N., Sharan A., Gupta B.K. et al.: Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance.–Sci. Rep. 6: 34762, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Soni P., Nutan K.K., Soda N. et al.: Towards understanding abiotic stress signaling in plants: convergence of genomic, transcriptomic, proteomic, and metabolomic approaches.–In: Paney G.K (ed.): Elucidation of Abiotic Stress Signaling in Plants. Vol. 2. Pp. 3–40. Springer, New York 2015.CrossRefGoogle Scholar
  151. Stanley S.M.: An ecological theory for the sudden origin of multicellular life in the late Precambrian.–P. Natl. Acad. Sci. USA 70: 1486–1489, 1973.CrossRefGoogle Scholar
  152. Stebbins G. L.: Chromosomal variation and evolution.–Science 152: 1463–1469, 1966.PubMedCrossRefGoogle Scholar
  153. Stepien P., Johnson G.N.: Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink.–Plant Physiol. 149: 1154–1165, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Strogonov B.P.: Physiological Basis of Salt Tolerance of Plants (as Affected by Various Types of Salinity). Pp. 279. Akademia Nauk SSSR, Moskva 1964.Google Scholar
  155. Sudhir P.R., Pogoryelov D., Kovacs L. et al.: The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis.–J. Biochem. Mol. Biol. 38: 481–485, 2005.PubMedGoogle Scholar
  156. Suga M., Akita F., Hirata K. et al.: Native structure of photosystem II at 1.95 A resolution viewed by femtosecond Xray pulses.–Nature 517: 99–103, 2015.PubMedCrossRefGoogle Scholar
  157. Sultana N., Ikeda T., Itoh R.: Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains.–Environ. Exp. Bot. 42: 211–220, 1999.CrossRefGoogle Scholar
  158. Takache H., Pruvost J., Marec H.: Investigation of light/dark cycles effects on the photosynthetic growth of Chlamydomonas reinhardtii in conditions representative of photobioreactor cultivation. — Algal Res. 8: 192–204, 2015.CrossRefGoogle Scholar
  159. Tezara W., Mitchell V.J., Driscoll S.D. et al.: Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. — Nature 401: 914–917, 1999.CrossRefGoogle Scholar
  160. Thagela P., Yadav R.K., Mishra V. et al.: Salinity-induced inhibition of growth in the aquatic pteridophyte Azolla microphylls primarily involves inhibition of photosynthetic components and signaling molecules as revealed by proteome analysis. — Protoplasma 254: 303–313, 2017.PubMedCrossRefGoogle Scholar
  161. Theerawitaya C., Samphumphaung T., Cha-Um S. et al.: Responses of Nipa palm (Nypa fruticans) seedlings, a mangrove species, to salt stress in pot culture. — Flora 209: 597–603, 2014.CrossRefGoogle Scholar
  162. Thomas B.J., Gest H., Govindjee.: Celebrating the millennium. historical highlights of photosynthesis research. — Photosynth. Res. 73: 1–6, 2002.CrossRefGoogle Scholar
  163. Tripathi A.K., Pareek A., Singla-Pareek S.L.: A NAP-family histone chaperone functions in abiotic stress response and adaptation.–Plant Physiol. 171: 2854–2868, 2016.PubMedPubMedCentralGoogle Scholar
  164. Udovenko G.V., Mashanskiï V.F., Sinitskaya I.A.: Changes of the root cell ultrastructure in plants with different salt tolerance during salinization.–Fiziol. Rast. 17: 975–981, 1970.Google Scholar
  165. United Nation University Institute for Water, Environment and Health (UNU-INWEH) report. Pp. 26. Hamilton, Canada 2014Google Scholar
  166. Vinyard D.J., Ananyev G.M., Dismukes G.C.: Photosystem II: the reaction centre of oxygenic photosynthesis. — Annu. Rev. Biochem. 82: 577–606, 2013.PubMedCrossRefGoogle Scholar
  167. Volkov V.: Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. — Front. Plant Sci. 6: 873, 2015.PubMedPubMedCentralGoogle Scholar
  168. von Caemmerer S., Quick W.P., Furbank R.T.: The development of C4 rice: current progress and future challenges. — Science 336: 1671–1672, 2012.PubMedCrossRefGoogle Scholar
  169. von Willert D.J., Kramer D.: [Ultrastructure and crassulacean acid metabolism in Mesembryanthemum crystallinum leaves during normal and NaCl-induced ageing.] — Planta 107: 227–237, 1972. [In German]PubMedCrossRefGoogle Scholar
  170. Wada S., Ishida H., Izumi M. et al.: Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. — Plant Physiol. 149: 885–893, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Wang L., Liang W., Xing J. et al.: Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) Druce. — J. Proteome Res. 12: 5124–5136, 2013.PubMedCrossRefGoogle Scholar
  172. Wang P., Song C.P.: Guard-cell signalling for hydrogen peroxide and abscisic acid. — New Phytol. 178:703–718, 2008.PubMedCrossRefGoogle Scholar
  173. Wang Y., Chu Y., Liu G. et al.: Identification of expressed sequence tags in an alkali grass (Puccinellia tenuiflora) cDNA library. — J. Plant Physiol. 164: 78–89, 2007.PubMedCrossRefGoogle Scholar
  174. Wang Y., Nii N.: Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. — J. Hortic. Sci. Biotechnol. 75: 623–627, 2000.CrossRefGoogle Scholar
  175. Williams B.P., Aubry S., Hibberd J.M.: Molecular evolution of genes recruited into C(4) photosynthesis. — Trends Plant Sci. 17: 213–220, 2012.PubMedCrossRefGoogle Scholar
  176. Willows R.D., Li Y., Scheer H. et al.: Structures of chlorophyll f. — Org. Lett. 15: 1588–90, 2013.PubMedCrossRefGoogle Scholar
  177. Wu H., Shabala L., Barry K. et al.: Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. — Physiol. Plantarum 149: 515–527, 2013.CrossRefGoogle Scholar
  178. Yamane K., Taniguchi M., Miyake H.: Salinity-induced subcellular accumulation of H2O2 in leaves of rice. — Protoplasma 249: 301–308, 2012.PubMedCrossRefGoogle Scholar
  179. Yamori W., Shikanai T.: Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. — Annu. Rev. Plant Biol. 67:81–106, 2016.PubMedCrossRefGoogle Scholar
  180. Yang C., Zhao L., Zhang H. et al.: Evolution of physiological responses to salt stress in hexaploid wheat. — P. Natl. Acad. Sci. USA 12: 11882–11887, 2014.CrossRefGoogle Scholar
  181. Yi X., Sun Y., Yang Q. et al.: Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance. — J Proteomics 99: 84–100, 2014.PubMedCrossRefGoogle Scholar
  182. Yoshida T., Mogami J., Yamaguchi-Shinozaki K.: ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. — Curr. Opin. Plant Biol. 21: 133–139, 2014.PubMedCrossRefGoogle Scholar
  183. Yu Y., Assmann S.M.: The effect of NaCl on stomatal opening in Arabidopsis wild type and agb1 heterotrimeric G-protein mutant plants. — Plant Signal. Behav. 11: e1085275, 2016.PubMedCrossRefGoogle Scholar
  184. Zhang Y., Lai J., Sun S. et al.: Comparison analysis of transcripts from the halophyte Thellungiella halophila. — J. Integr. Plant Biol. 50: 1327–1335, 2008.PubMedCrossRefGoogle Scholar
  185. Zhang Y.M., Ma H.L., Calderón-Urrea A. et al.: Anatomical changes to protect organelle integrity account for tolerance to alkali and salt stresses in Melilotus officinalis. — Plant Soil 406: 327–340, 2016.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • S. Wungrampha
    • 1
  • R. Joshi
    • 1
  • S. L. Singla-Pareek
    • 2
  • A. Pareek
    • 1
  1. 1.Stress Physiology and Molecular Biology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Plant Stress Biology Group, International Centre for Genetic Engineering and BiotechnologyAruna Asaf Ali MargNew DelhiIndia

Personalised recommendations