Skip to main content
Log in

Influence of the disaccharide trehalose on the oxidizing side of photosystem II

  • Published:
Photosynthetica

Abstract

The steady-state oxygen evolution rate was previously shown to be stimulated by the disaccharide trehalose in PSII suspension. Here we showed a similar increase in the rate of oxygen evolution in PSII core complexes from spinach in solution and in proteoliposomes in the presence of trehalose. Using direct electrometrical technique, we also revealed that trehalose had no effect on the kinetics of electron transfer from Mn to redox-active-tyrosyl radical, YZ (S1 → S2 transition), while it accelerated the kinetics of electrogenic proton transport during S2 → S3 and S4 → S0 transitions of the wateroxidizing complex (WOC) induced by the first, second, and third laser flashes in dark-adapted PSII samples. These observations imply that the effect of trehalose occurrs due to its interaction with the WOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

P680 :

the primary electron donor of PSII

QA, QB :

the primary and the secondary plastoquinone electron acceptors of PSII, respectively

RC:

reaction center

S0-S4 :

charge storage states of the WOC

WOC:

water-oxidizing complex

YZ :

redox active tyrosine residue 161 of D1 protein

Δψ :

transmembrane electric potential difference

References

  • Apostolova E., Bushova M., Tenchov B.: Thylakoid membranes during freeze-thaw treatment.–In: Murata N. (ed.): Research Photosynthesis, Vol. IV, Pp. 165–168, Kluwer Academic Publishers, Amsterdam 2005.

    Google Scholar 

  • Bakaltcheva I., Williams W.P., Schmitt J.M., Hincha D.K.: The solute permeability of thylakoid membranes is reduced by low concentrations of trehalose as a co-solute.–Biochim. Biophys. Acta 1189: 38–44, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter J.F., Crowe J.H.: An infrared spectroscopic study of the interactions of carbohydrates with dried proteins.–Biochemistry 28: 3916–3922, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Chang B., Yang L., Cong W. et al.: The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus.–Plant Physiol. Bioch. 77: 140–148, 2014.

    Article  CAS  Google Scholar 

  • Conjeaud H., Mathis P.: The effect of pH on the reduction kinetics of P-680 in tris-treated chloroplasts.–BBABiochemistry 590: 353–359, 1980.

    CAS  Google Scholar 

  • Crowe J.H., Crowe L.M., Chapman D.: Preservation of membranes in anhydrobiotic organisms: the role of trehalose.–Science 223: 701–703, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Crowe J.H., Crowe L.M., Oliver A.E. et al.: The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state.–Cryobiology 43: 89–105, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Crowe J.H.: Anhydrobiosis: an unsolved problem.–Plant Cell Environ. 37: 1491–1493, 2014.

    Article  PubMed  Google Scholar 

  • Crowe L.M.: Lessons from nature: the role of sugars in anhydrobiosis.–Comp. Biochem. Phys. A 131: 505–513, 2002.

    Article  Google Scholar 

  • Dau H., Haumann M.: Eight steps preceding O-O bond formation in oxygenic photosynthesis–a basic reaction cycle of the Photosystem II manganese complex.–BBA-Bioenergetics 1767: 472–483, 2007.

    Article  PubMed  CAS  Google Scholar 

  • de Wijn R., van Gorkom H.J.: The rate of charge recombination in Photosystem II.–BBA-Bioenergetics 1553: 302–308, 2002.

    Article  PubMed  Google Scholar 

  • Drachev L.A., Kaulen, A.D., Semenov A.Yu. et al.: Lipidimpregnated filters as a tool for studying the electric currentgenerating proteins.–Anal. Biochem. 96: 250–262, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez O., Béthencourt L., Quero A. et al.: Trehalose and plant stress responses: friend or foe?–Trend. Plant Sci. 15: 409–417, 2010.

    Article  CAS  Google Scholar 

  • Ferreira K.N., Iverson T.M., Maghlaoui K. et al.: Architecture of the photosynthetic oxygen-evolving center.–Science 303: 1831–1838, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Ford R.C., Evans M.C.W.: Isolation of a photosystem 2 preparation from higher plants with highly enriched oxygen evolution activity.–FEBS Lett. 160: 159–164, 1983.

    Article  CAS  Google Scholar 

  • Francia F., Malferrari M., Sacquin-Mora S., Venturoli G.: Charge recombination kinetics and protein dynamics in wild type and carotenoid-less bacterial reaction centers: studies in trehalose glasses.–J. Phys. Chem. 113: 10389–10398, 2009.

    Article  CAS  Google Scholar 

  • Gerken S., Dekker J.P., Schlodder E., Witt H.T.: Studies on the multiphasic charge recombination between chlorophyll aII+ (P-680+) and plastoquinone QA− in photosystem II complexes. Ultraviolet difference spectrum of Chl-aII+/Chl-aII.–Biochim. Biophys. Acta 977: 52–61, 1989.

    Article  CAS  Google Scholar 

  • Golub M., Hejazi M., Kölsch A. et al.: Solution structure of monomeric and trimeric Photosystem I of Thermosynechococcus elongatus investigated by small angle X-ray scattering.–Photosynth. Res., in press, Doi: 10.1007/s11120-017-0342-6, 2017.

    Google Scholar 

  • Gopta O.A., Tyunyatkina A.A., Kurashov V.N. et al.: Effect of redox mediators on the flash-induced membrane potential generation in Mn-depleted photosystem II core particles.–Eur. Biophys. J. 37: 1045–1050, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Guskov A., Kern J., Gabdulkhakov A. et al.: Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride.–Nat. Struct. Mol. Biol. 16: 334–342, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Haag E., Irrgang K.-D., Boekema E.J., Renger G.: Functional and structural analysis of photosystem II core complexes from spinach with high oxygen evolution capacity.–Eur. J. Biochem. 189: 47–53, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Halverson K.M., Barry B.A.: Sucrose and glycerol effects on photosystem II.–Biophys. J. 85: 1317–1325, 2003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrigan P.R., Madden T.D., Cullis P.R.: Protection of liposomes during hydration and freezing.–Chem. Phys. Lipids 52: 139–149, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Haumann M., Liebisch P., Müller C. et al.: Photosynthetic O2 formation tracked by time-resolved X-ray experiments.–Science 310: 1019–1021, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Haumann M., Mulkidjanian A., Junge W.: Electrogenicity of electron and proton transfer at the oxidizing side of photosystem II.–Biochemistry 36: 9304–9315, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hincha D.K. Sieg F., Bakaltcheva I. et al.: Freeze-thaw damage to thylakoid membranes: specific protection by sugars and proteins.–In: Steponkus P.L. (ed.): Advances in Low-Temperature Biology, Vol. 3. Pp. 141–183, JAI Press, London 1996.

    Article  CAS  Google Scholar 

  • Iturriaga G., Suárez R., Nova-Franco B.: Trehalose metabolism: from osmoprotection to signaling.–Int. J. Mol. Sci. 10: 3793–3810, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain N.K., Roy I.: Effect of trehalose on protein structure.–Protein Sci. 18: 24–36, 2009

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jun S.S., Yang J.Y., Choi H.J. et al.: Altered physiology in trehalose-producing transgenic tobacco plants: enhanced tolerance to drought and salinity stresses.–J. Plant Biol. 51: 327–336, 2008.

    Article  CAS  Google Scholar 

  • Kalaidzidis Ya.L, Gavrilov A.V., Zaitsev P.V. et al: PLUK–an environment for software development.–Program Comput. Softw. 23: 206–212, 1997.

    Google Scholar 

  • Kan Z., Yan X., Ma J.: Conformation dynamics and polarization effect of α,α-trehalose in a vacuum and in aqueous and salt solutions.–J. Phys. Chem. A. 119: 1573–1589, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K., Umena Y., Kamiya N., Shen J.-R.: Structure of the catalytic, inorganic core of oxygen-evolving photosystem II at 1.9 Å resolution.–J. Photoch. Photobio. B 104: 9–18, 2011.

    Article  CAS  Google Scholar 

  • Kok B., Forbush B., McGloin M.: Cooperation of charges in photosynthetic O2 evolution. I. A linear four-step mechanism.–Photochem. Photobiol. 11: 457–475, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Lunn J.E., Delorge I., Figueroa C.M. et al.: Trehalose metabolism in plants.–Plant J. 79: 544–567, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Luo Y., Li F., Wang G.P. et al.: Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heatinduced damage.–Biol. Plantarum 54: 495–501, 2010.

    Article  CAS  Google Scholar 

  • Malferrari M., Nalepa A., Venturoli G. et al.: Structural and dynamical characteristics of trehalose and sucrose matrices at different hydration levels as probed by FTIR and high-field EPR.–Phys. Chem. Chem. Phys. 16: 9831–9848, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Malferrari M., Savitsky A., Lubitz W. et al.: Protein immobilization capabilities of sucrose and trehalose glasses: the effect of protein/sugar concentration unraveled by high-field EPR.–J. Phys. Chem. Lett. 7: 4871–4877, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Mamedov M.D., Beshta O.E., Gurovskaya K.N. et al.: Photoelectric responses of oxygen-evolving complexes of photosystem II.–Biochemistry-Moscow+ 64: 606–611, 1999.

    Google Scholar 

  • Mamedov M.D., Kurashov V.N., Cherepanov D.A., Semenov A.Yu.: Photosystem II: Where does the light-induced voltage come from?–Front. Biosci. 15: 1007–1017, 2010.

    Article  CAS  Google Scholar 

  • Mamedov M.D., Petrova I.O., Yanykin D.V. et al.: Effect of trehalose on oxygen evolution and electron transfer in photosystem 2 complexes.–Biochemistry-Moscow+ 80: 61–66, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Mamedov M.D., Tyunyatkina A.A., Siletsky S.A., Semenov A.Yu.: Voltage changes involving photosystem II quinone-iron complex turnover.–Eur. Biophys. J. 35: 647–654, 2006.

    Article  PubMed  CAS  Google Scholar 

  • McEvoy J.P., Brudvig G.W.: Redox reactions of the non-heme iron in photosystem II: An EPR spectroscopic study.–Biochemistry 47: 13394–13403, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Muh F., Zouni A.: Light-induced water oxidation in photosystem II.–Front. Biosci. 16: 3072–3132, 2011.

    Article  CAS  Google Scholar 

  • Najafpour M.M., Renger G., Hołyńska M. et al.: Manganese compounds as water-oxidizing catalysts: From the natural water-oxidizing complex to nanosized manganese oxide structures.–Chem. Rev. 116: 2886–2936, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T., Sugiura M.: Flash-induced FTIR difference spectra of the water-oxidizing complex in moderately hydrated photosystem II core films: Effect of hydration extent on S-state transitions.–Biochemistry 41: 2322–2330, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ohtake S., Wang Y.J.: Trehalose: current use and future applications.–J. Pharm. Sci. 100: 2020–2053, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Palazzo G., Francia F., Mallardi A. et al.: Water activity regulates the QA- to QB electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides.–J. Am. Chem. Soc. 130: 9353–9363, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Petrova I.O., Kurashov V.N., Zaspa A.A. et al.: Vectorial charge transfer reactions on the donor side of manganese-depleted and reconstituted photosystem 2 core complexes.–Biochemistry-Moscow+ 78: 395–402, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Polander P.C., Barry B.A.: A hydrogen-bonding network plays a catalytic role in photosynthetic oxygen evolution.–P. Natl. Acad. Sci. USA 109: 6112–6117, 2012.

    Article  Google Scholar 

  • Renger G., Kühn P.: Reaction pattern and mechanism of light induced oxidative water splitting in photosynthesis.–BBABioenergetics 1767: 458–471, 2007.

    Article  CAS  Google Scholar 

  • Semenov A., Cherepanov D., Mamedov M.: Electrogenic reactions and dielectric properties of photosystem II.–Photosynth. Res. 98: 121–130, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Semenov A.Y., Mamedov M.D., Chamorovsky S.K.: Electrogenic reactions associated with electron transfer in photosystem I.–In: Golbeck J.H. (ed.): Advances in Photosynthesis and Respiration Series. Photosystem I: the Light-driven, Platocyanin:Ferredoxin Oxidoreductase. Chapter 21. Pp. 319–424. Springer, Dordrecht 2006.

    Google Scholar 

  • Shevela D., Eaton-Rye J.J., Shen J.R., Govindjee.: Photosystem II and the unique role of bicarbonate: a historical perspective.–Biochim. Biophys. Acta. 1817: 1134–1151, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Shimada Y., Suzuki H., Tsuchiya T. et al.: Structural coupling of an arginine side chain with the oxygen-evolving Mn4Ca cluster in photosystem II as revealed by isotope-edited Fourier transform infrared spectroscopy.–J. Am. Chem. Soc. 133: 3808–3811, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Shinkarev V.P., Wraight C.A.: Oxygen evolution in photosynthesis: from unicycle to bicycle.–P. Natl. Acad. Sci. USA 90: 1834–1838, 1993.

    Article  CAS  Google Scholar 

  • Shinkarev V.P.: Photosystem II: Oxygen evolution and chlorophyll a fluorescence induced by multiple flashes.–In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll Fluorescence: a Signature of Photosynthesis. Pp. 197–229. Kluwer Academic Publishers, Amsterdam 2

    Chapter  Google Scholar 

  • Shoji M., Isobe H., Yamanak S. et al.: Theoretical insight in to hydrogen-bonding networks and proton wire for the CaMn4O5 cluster of photosystem II. Elongation of Mn-Mn distances with hydrogen bonds.–Catal. Sci. Technol. 3: 1831–1848, 2013.

    Article  CAS  Google Scholar 

  • Shutova T., Klimov V.V., Andersson B., Samuelsson G.A.: Cluster of carboxylic groups in PsbO protein is involved in proton transfer from the water oxidizing complex of photosystem II.–BBA-Bioenergetics 1767: 434–440, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Umena Y., Kawakami K., Shen J.-R., Kamiya N.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å.–Nature 473: 55–60, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Uribe S., Sampedro J.G.: Measuring solution viscosity and its effect on enzyme activity.–Biol. Proced. Online. 5: 108–115, 2003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villarreal M.A., Díaz S.B., Disalvo E.A., Montich G.C.: Molecular dynamics simulation study of the interaction of trehalose with lipid membranes.–Langmuir 20: 7844–7851, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Vinyard D.J., Brudvig G.W.: Progress toward a molecular mechanism of water oxidation in photosystem II.–Annu. Rev. Phys. Chem. 68: 101–116, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Williams W.P., Brain A.P.R., Dominy P.J.: Induction of nonbilayer lipid phase separations in chloroplast thylakoid membranes by compatible co-solutes and its relation to the thermal stability of Photosystem II.–Biochim. Biophys. Acta 1099: 137–144, 1992.

    Article  CAS  Google Scholar 

  • Williams W.P., Gounaris K.: Stabilization of PS-II mediated electron transport in oxygen-evolving PS II core preparations by the addition of compatible co-solutes.–Biochim. Biophys. Acta 1100: 92–97, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski T.J., Satoh K.: Photosystem II: The Light-driven Water:Plastoquinone Oxidoreductase. Pp. 11–22. Springer, New York 2005.

    Google Scholar 

  • Yanykin D.V., Khorobrykh A.A., Mamedov M.D., Klimov V.V.: Trehalose stimulation of photoinduced electron transfer and oxygen photoconsumption in Mn-depleted photosystem 2 membrane fragments.–J. Photoch. Photobio. B. 152(Pt B): 279–285, 2015.

    Article  CAS  Google Scholar 

  • Yanykin D.V., Khorobrykh A.A., Mamedov M.D., Klimov V.V.: Trehalose protects Mn-depleted photosystem 2 preparations against the donor-side photoinhibition.–J. Photoch. Photobio. B. 164: 236–243, 2016.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Mamedov.

Additional information

Acknowledgment: This work has the support from the Russian Science Foundation (Grant 17-14-01323).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamedov, M.D., Nosikova, E.S., Vitukhnovskaya, L.A. et al. Influence of the disaccharide trehalose on the oxidizing side of photosystem II. Photosynthetica 56, 236–243 (2018). https://doi.org/10.1007/s11099-017-0750-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0750-z

Additional key words

Navigation