, Volume 56, Issue 1, pp 236–243 | Cite as

Influence of the disaccharide trehalose on the oxidizing side of photosystem II

  • M. D. Mamedov
  • E. S. Nosikova
  • L. A. Vitukhnovskaya
  • A. A. Zaspa
  • A. Yu. Semenov


The steady-state oxygen evolution rate was previously shown to be stimulated by the disaccharide trehalose in PSII suspension. Here we showed a similar increase in the rate of oxygen evolution in PSII core complexes from spinach in solution and in proteoliposomes in the presence of trehalose. Using direct electrometrical technique, we also revealed that trehalose had no effect on the kinetics of electron transfer from Mn to redox-active-tyrosyl radical, YZ (S1 → S2 transition), while it accelerated the kinetics of electrogenic proton transport during S2 → S3 and S4 → S0 transitions of the wateroxidizing complex (WOC) induced by the first, second, and third laser flashes in dark-adapted PSII samples. These observations imply that the effect of trehalose occurrs due to its interaction with the WOC.

Additional key words

effective functioning osmolyte photoelectric response vectorial transfer 





the primary electron donor of PSII


the primary and the secondary plastoquinone electron acceptors of PSII, respectively


reaction center


charge storage states of the WOC


water-oxidizing complex


redox active tyrosine residue 161 of D1 protein


transmembrane electric potential difference


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apostolova E., Bushova M., Tenchov B.: Thylakoid membranes during freeze-thaw treatment.–In: Murata N. (ed.): Research Photosynthesis, Vol. IV, Pp. 165–168, Kluwer Academic Publishers, Amsterdam 2005.Google Scholar
  2. Bakaltcheva I., Williams W.P., Schmitt J.M., Hincha D.K.: The solute permeability of thylakoid membranes is reduced by low concentrations of trehalose as a co-solute.–Biochim. Biophys. Acta 1189: 38–44, 1994.CrossRefPubMedGoogle Scholar
  3. Carpenter J.F., Crowe J.H.: An infrared spectroscopic study of the interactions of carbohydrates with dried proteins.–Biochemistry 28: 3916–3922, 1989.CrossRefPubMedGoogle Scholar
  4. Chang B., Yang L., Cong W. et al.: The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus.–Plant Physiol. Bioch. 77: 140–148, 2014.CrossRefGoogle Scholar
  5. Conjeaud H., Mathis P.: The effect of pH on the reduction kinetics of P-680 in tris-treated chloroplasts.–BBABiochemistry 590: 353–359, 1980.Google Scholar
  6. Crowe J.H., Crowe L.M., Chapman D.: Preservation of membranes in anhydrobiotic organisms: the role of trehalose.–Science 223: 701–703, 1984.CrossRefPubMedGoogle Scholar
  7. Crowe J.H., Crowe L.M., Oliver A.E. et al.: The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state.–Cryobiology 43: 89–105, 2001.CrossRefPubMedGoogle Scholar
  8. Crowe J.H.: Anhydrobiosis: an unsolved problem.–Plant Cell Environ. 37: 1491–1493, 2014.CrossRefPubMedGoogle Scholar
  9. Crowe L.M.: Lessons from nature: the role of sugars in anhydrobiosis.–Comp. Biochem. Phys. A 131: 505–513, 2002.CrossRefGoogle Scholar
  10. Dau H., Haumann M.: Eight steps preceding O-O bond formation in oxygenic photosynthesis–a basic reaction cycle of the Photosystem II manganese complex.–BBA-Bioenergetics 1767: 472–483, 2007.CrossRefPubMedGoogle Scholar
  11. de Wijn R., van Gorkom H.J.: The rate of charge recombination in Photosystem II.–BBA-Bioenergetics 1553: 302–308, 2002.CrossRefPubMedGoogle Scholar
  12. Drachev L.A., Kaulen, A.D., Semenov A.Yu. et al.: Lipidimpregnated filters as a tool for studying the electric currentgenerating proteins.–Anal. Biochem. 96: 250–262, 1979.CrossRefPubMedGoogle Scholar
  13. Fernandez O., Béthencourt L., Quero A. et al.: Trehalose and plant stress responses: friend or foe?–Trend. Plant Sci. 15: 409–417, 2010.CrossRefGoogle Scholar
  14. Ferreira K.N., Iverson T.M., Maghlaoui K. et al.: Architecture of the photosynthetic oxygen-evolving center.–Science 303: 1831–1838, 2004.CrossRefPubMedGoogle Scholar
  15. Ford R.C., Evans M.C.W.: Isolation of a photosystem 2 preparation from higher plants with highly enriched oxygen evolution activity.–FEBS Lett. 160: 159–164, 1983.CrossRefGoogle Scholar
  16. Francia F., Malferrari M., Sacquin-Mora S., Venturoli G.: Charge recombination kinetics and protein dynamics in wild type and carotenoid-less bacterial reaction centers: studies in trehalose glasses.–J. Phys. Chem. 113: 10389–10398, 2009.CrossRefGoogle Scholar
  17. Gerken S., Dekker J.P., Schlodder E., Witt H.T.: Studies on the multiphasic charge recombination between chlorophyll aII+ (P-680+) and plastoquinone QA− in photosystem II complexes. Ultraviolet difference spectrum of Chl-aII+/Chl-aII.–Biochim. Biophys. Acta 977: 52–61, 1989.CrossRefGoogle Scholar
  18. Golub M., Hejazi M., Kölsch A. et al.: Solution structure of monomeric and trimeric Photosystem I of Thermosynechococcus elongatus investigated by small angle X-ray scattering.–Photosynth. Res., in press, Doi: 10.1007/s11120-017-0342-6, 2017.Google Scholar
  19. Gopta O.A., Tyunyatkina A.A., Kurashov V.N. et al.: Effect of redox mediators on the flash-induced membrane potential generation in Mn-depleted photosystem II core particles.–Eur. Biophys. J. 37: 1045–1050, 2008.CrossRefPubMedGoogle Scholar
  20. Guskov A., Kern J., Gabdulkhakov A. et al.: Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride.–Nat. Struct. Mol. Biol. 16: 334–342, 2009.CrossRefPubMedGoogle Scholar
  21. Haag E., Irrgang K.-D., Boekema E.J., Renger G.: Functional and structural analysis of photosystem II core complexes from spinach with high oxygen evolution capacity.–Eur. J. Biochem. 189: 47–53, 1990.CrossRefPubMedGoogle Scholar
  22. Halverson K.M., Barry B.A.: Sucrose and glycerol effects on photosystem II.–Biophys. J. 85: 1317–1325, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Harrigan P.R., Madden T.D., Cullis P.R.: Protection of liposomes during hydration and freezing.–Chem. Phys. Lipids 52: 139–149, 1990.CrossRefPubMedGoogle Scholar
  24. Haumann M., Liebisch P., Müller C. et al.: Photosynthetic O2 formation tracked by time-resolved X-ray experiments.–Science 310: 1019–1021, 2005.CrossRefPubMedGoogle Scholar
  25. Haumann M., Mulkidjanian A., Junge W.: Electrogenicity of electron and proton transfer at the oxidizing side of photosystem II.–Biochemistry 36: 9304–9315, 1997.CrossRefPubMedGoogle Scholar
  26. Hincha D.K. Sieg F., Bakaltcheva I. et al.: Freeze-thaw damage to thylakoid membranes: specific protection by sugars and proteins.–In: Steponkus P.L. (ed.): Advances in Low-Temperature Biology, Vol. 3. Pp. 141–183, JAI Press, London 1996.CrossRefGoogle Scholar
  27. Iturriaga G., Suárez R., Nova-Franco B.: Trehalose metabolism: from osmoprotection to signaling.–Int. J. Mol. Sci. 10: 3793–3810, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jain N.K., Roy I.: Effect of trehalose on protein structure.–Protein Sci. 18: 24–36, 2009PubMedPubMedCentralGoogle Scholar
  29. Jun S.S., Yang J.Y., Choi H.J. et al.: Altered physiology in trehalose-producing transgenic tobacco plants: enhanced tolerance to drought and salinity stresses.–J. Plant Biol. 51: 327–336, 2008.CrossRefGoogle Scholar
  30. Kalaidzidis Ya.L, Gavrilov A.V., Zaitsev P.V. et al: PLUK–an environment for software development.–Program Comput. Softw. 23: 206–212, 1997.Google Scholar
  31. Kan Z., Yan X., Ma J.: Conformation dynamics and polarization effect of α,α-trehalose in a vacuum and in aqueous and salt solutions.–J. Phys. Chem. A. 119: 1573–1589, 2015.CrossRefPubMedGoogle Scholar
  32. Kawakami K., Umena Y., Kamiya N., Shen J.-R.: Structure of the catalytic, inorganic core of oxygen-evolving photosystem II at 1.9 Å resolution.–J. Photoch. Photobio. B 104: 9–18, 2011.CrossRefGoogle Scholar
  33. Kok B., Forbush B., McGloin M.: Cooperation of charges in photosynthetic O2 evolution. I. A linear four-step mechanism.–Photochem. Photobiol. 11: 457–475, 1970.CrossRefPubMedGoogle Scholar
  34. Lunn J.E., Delorge I., Figueroa C.M. et al.: Trehalose metabolism in plants.–Plant J. 79: 544–567, 2014.CrossRefPubMedGoogle Scholar
  35. Luo Y., Li F., Wang G.P. et al.: Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heatinduced damage.–Biol. Plantarum 54: 495–501, 2010.CrossRefGoogle Scholar
  36. Malferrari M., Nalepa A., Venturoli G. et al.: Structural and dynamical characteristics of trehalose and sucrose matrices at different hydration levels as probed by FTIR and high-field EPR.–Phys. Chem. Chem. Phys. 16: 9831–9848, 2014.CrossRefPubMedGoogle Scholar
  37. Malferrari M., Savitsky A., Lubitz W. et al.: Protein immobilization capabilities of sucrose and trehalose glasses: the effect of protein/sugar concentration unraveled by high-field EPR.–J. Phys. Chem. Lett. 7: 4871–4877, 2016.CrossRefPubMedGoogle Scholar
  38. Mamedov M.D., Beshta O.E., Gurovskaya K.N. et al.: Photoelectric responses of oxygen-evolving complexes of photosystem II.–Biochemistry-Moscow+ 64: 606–611, 1999.Google Scholar
  39. Mamedov M.D., Kurashov V.N., Cherepanov D.A., Semenov A.Yu.: Photosystem II: Where does the light-induced voltage come from?–Front. Biosci. 15: 1007–1017, 2010.CrossRefGoogle Scholar
  40. Mamedov M.D., Petrova I.O., Yanykin D.V. et al.: Effect of trehalose on oxygen evolution and electron transfer in photosystem 2 complexes.–Biochemistry-Moscow+ 80: 61–66, 2015.CrossRefPubMedGoogle Scholar
  41. Mamedov M.D., Tyunyatkina A.A., Siletsky S.A., Semenov A.Yu.: Voltage changes involving photosystem II quinone-iron complex turnover.–Eur. Biophys. J. 35: 647–654, 2006.CrossRefPubMedGoogle Scholar
  42. McEvoy J.P., Brudvig G.W.: Redox reactions of the non-heme iron in photosystem II: An EPR spectroscopic study.–Biochemistry 47: 13394–13403, 2008.CrossRefPubMedGoogle Scholar
  43. Muh F., Zouni A.: Light-induced water oxidation in photosystem II.–Front. Biosci. 16: 3072–3132, 2011.CrossRefGoogle Scholar
  44. Najafpour M.M., Renger G., Hołyńska M. et al.: Manganese compounds as water-oxidizing catalysts: From the natural water-oxidizing complex to nanosized manganese oxide structures.–Chem. Rev. 116: 2886–2936, 2016.CrossRefPubMedGoogle Scholar
  45. Noguchi T., Sugiura M.: Flash-induced FTIR difference spectra of the water-oxidizing complex in moderately hydrated photosystem II core films: Effect of hydration extent on S-state transitions.–Biochemistry 41: 2322–2330, 2002.CrossRefPubMedGoogle Scholar
  46. Ohtake S., Wang Y.J.: Trehalose: current use and future applications.–J. Pharm. Sci. 100: 2020–2053, 2011.CrossRefPubMedGoogle Scholar
  47. Palazzo G., Francia F., Mallardi A. et al.: Water activity regulates the QA- to QB electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides.–J. Am. Chem. Soc. 130: 9353–9363, 2008.CrossRefPubMedGoogle Scholar
  48. Petrova I.O., Kurashov V.N., Zaspa A.A. et al.: Vectorial charge transfer reactions on the donor side of manganese-depleted and reconstituted photosystem 2 core complexes.–Biochemistry-Moscow+ 78: 395–402, 2013.CrossRefPubMedGoogle Scholar
  49. Polander P.C., Barry B.A.: A hydrogen-bonding network plays a catalytic role in photosynthetic oxygen evolution.–P. Natl. Acad. Sci. USA 109: 6112–6117, 2012.CrossRefGoogle Scholar
  50. Renger G., Kühn P.: Reaction pattern and mechanism of light induced oxidative water splitting in photosynthesis.–BBABioenergetics 1767: 458–471, 2007.CrossRefGoogle Scholar
  51. Semenov A., Cherepanov D., Mamedov M.: Electrogenic reactions and dielectric properties of photosystem II.–Photosynth. Res. 98: 121–130, 2008.CrossRefPubMedGoogle Scholar
  52. Semenov A.Y., Mamedov M.D., Chamorovsky S.K.: Electrogenic reactions associated with electron transfer in photosystem I.–In: Golbeck J.H. (ed.): Advances in Photosynthesis and Respiration Series. Photosystem I: the Light-driven, Platocyanin:Ferredoxin Oxidoreductase. Chapter 21. Pp. 319–424. Springer, Dordrecht 2006.Google Scholar
  53. Shevela D., Eaton-Rye J.J., Shen J.R., Govindjee.: Photosystem II and the unique role of bicarbonate: a historical perspective.–Biochim. Biophys. Acta. 1817: 1134–1151, 2012.CrossRefPubMedGoogle Scholar
  54. Shimada Y., Suzuki H., Tsuchiya T. et al.: Structural coupling of an arginine side chain with the oxygen-evolving Mn4Ca cluster in photosystem II as revealed by isotope-edited Fourier transform infrared spectroscopy.–J. Am. Chem. Soc. 133: 3808–3811, 2011.CrossRefPubMedGoogle Scholar
  55. Shinkarev V.P., Wraight C.A.: Oxygen evolution in photosynthesis: from unicycle to bicycle.–P. Natl. Acad. Sci. USA 90: 1834–1838, 1993.CrossRefGoogle Scholar
  56. Shinkarev V.P.: Photosystem II: Oxygen evolution and chlorophyll a fluorescence induced by multiple flashes.–In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll Fluorescence: a Signature of Photosynthesis. Pp. 197–229. Kluwer Academic Publishers, Amsterdam 2CrossRefGoogle Scholar
  57. Shoji M., Isobe H., Yamanak S. et al.: Theoretical insight in to hydrogen-bonding networks and proton wire for the CaMn4O5 cluster of photosystem II. Elongation of Mn-Mn distances with hydrogen bonds.–Catal. Sci. Technol. 3: 1831–1848, 2013.CrossRefGoogle Scholar
  58. Shutova T., Klimov V.V., Andersson B., Samuelsson G.A.: Cluster of carboxylic groups in PsbO protein is involved in proton transfer from the water oxidizing complex of photosystem II.–BBA-Bioenergetics 1767: 434–440, 2007.CrossRefPubMedGoogle Scholar
  59. Umena Y., Kawakami K., Shen J.-R., Kamiya N.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å.–Nature 473: 55–60, 2011.CrossRefPubMedGoogle Scholar
  60. Uribe S., Sampedro J.G.: Measuring solution viscosity and its effect on enzyme activity.–Biol. Proced. Online. 5: 108–115, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Villarreal M.A., Díaz S.B., Disalvo E.A., Montich G.C.: Molecular dynamics simulation study of the interaction of trehalose with lipid membranes.–Langmuir 20: 7844–7851, 2004.CrossRefPubMedGoogle Scholar
  62. Vinyard D.J., Brudvig G.W.: Progress toward a molecular mechanism of water oxidation in photosystem II.–Annu. Rev. Phys. Chem. 68: 101–116, 2017.CrossRefPubMedGoogle Scholar
  63. Williams W.P., Brain A.P.R., Dominy P.J.: Induction of nonbilayer lipid phase separations in chloroplast thylakoid membranes by compatible co-solutes and its relation to the thermal stability of Photosystem II.–Biochim. Biophys. Acta 1099: 137–144, 1992.CrossRefGoogle Scholar
  64. Williams W.P., Gounaris K.: Stabilization of PS-II mediated electron transport in oxygen-evolving PS II core preparations by the addition of compatible co-solutes.–Biochim. Biophys. Acta 1100: 92–97, 1992.CrossRefPubMedGoogle Scholar
  65. Wydrzynski T.J., Satoh K.: Photosystem II: The Light-driven Water:Plastoquinone Oxidoreductase. Pp. 11–22. Springer, New York 2005.Google Scholar
  66. Yanykin D.V., Khorobrykh A.A., Mamedov M.D., Klimov V.V.: Trehalose stimulation of photoinduced electron transfer and oxygen photoconsumption in Mn-depleted photosystem 2 membrane fragments.–J. Photoch. Photobio. B. 152(Pt B): 279–285, 2015.CrossRefGoogle Scholar
  67. Yanykin D.V., Khorobrykh A.A., Mamedov M.D., Klimov V.V.: Trehalose protects Mn-depleted photosystem 2 preparations against the donor-side photoinhibition.–J. Photoch. Photobio. B. 164: 236–243, 2016.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • M. D. Mamedov
    • 1
  • E. S. Nosikova
    • 2
  • L. A. Vitukhnovskaya
    • 1
  • A. A. Zaspa
    • 1
  • A. Yu. Semenov
    • 1
  1. 1.Belozersky Institute of Physical-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations