Skip to main content

Advertisement

Log in

On oxygen production by photosynthesis: A viewpoint

  • Brief Communication
  • Published:
Photosynthetica

Abstract

In this brief communication we provide an estimate of the part of the incident solar energy used for oxygen evolution as well as the time, in years, needed for the generation of the present amount of molecular oxygen in the biosphere by photosynthesis on land and in the ocean. We find this to be ≈3,000 yr. We also find that the ocean produces 22% more oxygen than the land surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

NPP:

net primary production

References

  • Albarrán-Zavala E., Angulo-Brown F.: A simple thermodynamic analysis of photosynthesis.–Entropy 9: 152–168, 2007.

    Article  Google Scholar 

  • Behrenfeld M.J., Randerson J.T., McClain C.R. et al.: Biospheric primary production during an ENSO transition.–Science 291: 2594–2597, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Björn L.O., Govindjee: The evolution of photosynthesis and its environmental impact.–In: Björn L.O. (ed.): Photobiology: The Science of Light and Life. Pp. 207–229. Springer Science+ Business Media, New York 2015.

    Google Scholar 

  • Blankenship R.E.: Molecular Mechanisms of Photosynthesis, 2nd ed. Pp. 312. Wiley-Blackwell, Hoboken 2014.

    Google Scholar 

  • Borisov A.Y.: Photosynthesizing organisms: converters of solar energy.–In: Barber J. (ed.): Photosynthesis in Relation to Model Systems. Pp 1–26. Elsevier/North Holland Biomedical Press, Amsterdam–New York–Oxford 1979.

    Google Scholar 

  • Brown C.W., Uz S.S., Corliss B.H.: Seasonality of oceanic primary production and its interannual variability from 1998 to 2007.–Deep-Sea Res. 190: 166–175, 2014.

    Article  CAS  Google Scholar 

  • Budyko M.I., Ronov A.B., Yanshin A.L.: History of the Earth’s Atmosphere. Pp. 139. Springer Verlag, Heidelberg, 1987.

    Book  Google Scholar 

  • Demmig-Adams B., Garab G., Adams III W., Govindjee (ed.): Non-Photochemical Quenching and Energy Dissipation In Plants, Algae and Cyanobacteria, Advances in Photosynthesis and Respiration Including Bioenergy and Other Processes, Vol. 40. Pp. 649. Springer, Dordrecht 2014.

    Google Scholar 

  • Domalski E.S.: Selected values of heats of combustion and heats of formation of organic compounds containing the elements C, H, N, O, P, and S.–J. Phys. Chem. Ref. Data 1: 221–277, 1972.

    Article  CAS  Google Scholar 

  • Escobedo J.F., Gomes E.N., Oliveira A.P., Soares J.: Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil.–Renew. Energ. 36: 169–178, 2011.

    Article  Google Scholar 

  • Falkowski P., Raven J.: Aquatic Photosynthesis, 2nd ed. Pp. 484. Princton University Press, Princeton 2007.

    Google Scholar 

  • Field C.B., Behrenfeld M.J., Randerson J.T., Falkowski, P.: Primary production of the biosphere: integrating terrestrial and oceanic components.–Science 281: 237–240, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Fischer W.W., Hemp J., Johnson J.E.: Evolution of oxygenic photosynthesis.–Annu. Rev. Earth Planet. Sci. 44: 647–683, 2016.

    Article  CAS  Google Scholar 

  • Fröhlich C.: Observation of irradiance variations.–Space Sci. Rev. 94: 15–24, 2000.

    Article  Google Scholar 

  • Huston M.A., Wolverton S.: The global distribution of net primary production: resolving the paradox.–Ecol. Monogr. 79: 343–377, 2009.

    Article  Google Scholar 

  • Keeling R.F.: Development of an Interferometric Oxygen Analyzer for Precise Measurement of the Atmospheric O2 Mole Fraction. Pp. 178.–PhD Thesis, Harvard University, Harvard 1988a.

    Google Scholar 

  • Keeling R.F.: Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air.–J. Atm. Chem. 7: 153–l76, 1988b.

    Article  CAS  Google Scholar 

  • Keeling R.F., Najjar R.P., Bender M.L., Tans P.P.: What atmos pheric oxygen measurements can tell us about the global car bon cycle.–Global Biogeochem. Cy. 7: 37–67, 1993.

    Article  CAS  Google Scholar 

  • Keeling R.F., Garcia H.E.: The change in oceanic O2 inventory associated with recent global warming–P. Natl Acad. Sci. USA 99: 7848–7853, 2002.

    Article  CAS  Google Scholar 

  • Knox R.S.: Thermodynamics and the primary processes of photosynthesis.–Biophys. J. 9: 1351–1362, 1969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kopp G., Lean J.L.: A new, lower value of total solar irradiance: Evidence and climate significance.–Geophys. Res. Lett. 38: L01706, 2011.

    Article  Google Scholar 

  • Livina V.N., Vaz Martins T.M., Forbes A.B.: Tipping point analysis of atmospheric oxygen concentration.–Chaos 25: 036403, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Long M.C., Deutsch C, Ito T.: Finding forced trends in oceanic oxygen.–Glob. Biogeochem. Cycl. 30: 381–397, 2015.

    Article  CAS  Google Scholar 

  • McCree K.J.: The action spectrum, absorptance and quantum yield of photosynthesis in crop plants.–Agric. Meteorol. 9: 191–216, 1972.

    Article  Google Scholar 

  • Mecherikunnel A.T., Richmond J.C.: Spectral distribution of solar radiation. NASA Report TM 82021. Pp. 86. Goddard Space Flight Center, Greenbelt 1980.

    Google Scholar 

  • Miller D.P., de Pablo J.J.: Calorimetric solution properties of simple saccharides and their significance for the stabilization of biological structure and function.–J. Phys. Chem. B 104: 8876–8883, 2000.

    Article  CAS  Google Scholar 

  • Nemani R.R., Keeling C.D., Hashimoto H. et al.: Climate-driven increases in global terrestrial net primary production from 1982 to 1999.–Science 300: 1560–1563, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Paradiso R., Meinen E,. Snel J.F.H. et al.: Spectral dependence of photosynthesis and light absorptance in single leaves and canopy in rose.–Sci. Hortic.-Amsterdam 127: 548–554, 2011.

    Article  CAS  Google Scholar 

  • Rabinowitch E., Govindjee: Photosynthesis. Pp. 273. John Wiley & Sons, New York 1969.

    Google Scholar 

  • Running S.W., Zhao M.: User’s guide daily GPP and annual NPP (MOD17A2/A3) products NASA Earth Observing System MODIS land algorithm. http://www.academia.edu/4620715/Users_Guide_GPP_and_NPP_MOD17A2_A3_Products_NA SA_MODIS_Land_Algorithm, 2015.

    Google Scholar 

  • Running S.W., Nemani R.R., Heinsch F.A. et al: A continuous satellite-derived measure of global terrestrial primary production.–BioScience 54: 547–560, 2004.

    Article  Google Scholar 

  • Sirignano C., Neubert R.E.M., Rödenbeck C., Meijer H.A.J.: Atmospheric oxygen and carbon dioxide observations from two European coastal stations 2000–2005: continental influence, trend changes and APO climatology.–Atmos. Chem. Phys. 10: 1599–1615, 2010.

    Article  CAS  Google Scholar 

  • Skulachev V.R.: Bioenergetics: the evolution of molecular mechanisms and the development of bioenergetic concepts.–Anton. Leeuw. 65: 271–284, 1994.

    Article  CAS  Google Scholar 

  • Yu H., Chin M., Yuan T. et al.: The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations.–Geophys. Res. Lett. 42: 1984–1991, 2015.

    Article  CAS  Google Scholar 

  • Zagoni M.: A new diagram of Earth’s global energy budget.–Acta Geod. Geophys. 51: 481–492, 2016.

    Article  Google Scholar 

  • Zhao M., Running S., Heinsch F.A., Nemani R.: MODIS-derived terrestrial primary production.–In: Ramachandran B., Justice C.O., Abrams J. (ed.): Land Remote Sensing and Global Environmental Change Remote Sensing and Digital Image Processing. Pp. 635–660. Springer, New York 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Björn.

Additional information

Acknowledgements: In celebration of our good friend Govindjee’s 85th birthday on October 24, 2017. In our view, Govindjee is the unique symbol and banner of PHOTOSYNTHESIS of our days. His infectious enthusiasm, and service to the photosynthesis community is unmatched. And, his research and teaching contributions have surpassed most of the grand masters of our time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, A.Y., Björn, L.O. On oxygen production by photosynthesis: A viewpoint. Photosynthetica 56, 44–47 (2018). https://doi.org/10.1007/s11099-017-0738-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0738-8

Additional key words

Navigation