, Volume 56, Issue 1, pp 44–47 | Cite as

On oxygen production by photosynthesis: A viewpoint

  • A. Yu. Borisov
  • L. O. Björn
Brief Communication


In this brief communication we provide an estimate of the part of the incident solar energy used for oxygen evolution as well as the time, in years, needed for the generation of the present amount of molecular oxygen in the biosphere by photosynthesis on land and in the ocean. We find this to be ≈3,000 yr. We also find that the ocean produces 22% more oxygen than the land surface.

Additional key words

Govindjee net primary production oceanic oxygen production solar radiation terrestrial oxygen production 



net primary production


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albarrán-Zavala E., Angulo-Brown F.: A simple thermodynamic analysis of photosynthesis.–Entropy 9: 152–168, 2007.CrossRefGoogle Scholar
  2. Behrenfeld M.J., Randerson J.T., McClain C.R. et al.: Biospheric primary production during an ENSO transition.–Science 291: 2594–2597, 2001.CrossRefPubMedGoogle Scholar
  3. Björn L.O., Govindjee: The evolution of photosynthesis and its environmental impact.–In: Björn L.O. (ed.): Photobiology: The Science of Light and Life. Pp. 207–229. Springer Science+ Business Media, New York 2015.Google Scholar
  4. Blankenship R.E.: Molecular Mechanisms of Photosynthesis, 2nd ed. Pp. 312. Wiley-Blackwell, Hoboken 2014.Google Scholar
  5. Borisov A.Y.: Photosynthesizing organisms: converters of solar energy.–In: Barber J. (ed.): Photosynthesis in Relation to Model Systems. Pp 1–26. Elsevier/North Holland Biomedical Press, Amsterdam–New York–Oxford 1979.Google Scholar
  6. Brown C.W., Uz S.S., Corliss B.H.: Seasonality of oceanic primary production and its interannual variability from 1998 to 2007.–Deep-Sea Res. 190: 166–175, 2014.CrossRefGoogle Scholar
  7. Budyko M.I., Ronov A.B., Yanshin A.L.: History of the Earth’s Atmosphere. Pp. 139. Springer Verlag, Heidelberg, 1987.CrossRefGoogle Scholar
  8. Demmig-Adams B., Garab G., Adams III W., Govindjee (ed.): Non-Photochemical Quenching and Energy Dissipation In Plants, Algae and Cyanobacteria, Advances in Photosynthesis and Respiration Including Bioenergy and Other Processes, Vol. 40. Pp. 649. Springer, Dordrecht 2014.Google Scholar
  9. Domalski E.S.: Selected values of heats of combustion and heats of formation of organic compounds containing the elements C, H, N, O, P, and S.–J. Phys. Chem. Ref. Data 1: 221–277, 1972.CrossRefGoogle Scholar
  10. Escobedo J.F., Gomes E.N., Oliveira A.P., Soares J.: Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil.–Renew. Energ. 36: 169–178, 2011.CrossRefGoogle Scholar
  11. Falkowski P., Raven J.: Aquatic Photosynthesis, 2nd ed. Pp. 484. Princton University Press, Princeton 2007.Google Scholar
  12. Field C.B., Behrenfeld M.J., Randerson J.T., Falkowski, P.: Primary production of the biosphere: integrating terrestrial and oceanic components.–Science 281: 237–240, 1998.CrossRefPubMedGoogle Scholar
  13. Fischer W.W., Hemp J., Johnson J.E.: Evolution of oxygenic photosynthesis.–Annu. Rev. Earth Planet. Sci. 44: 647–683, 2016.CrossRefGoogle Scholar
  14. Fröhlich C.: Observation of irradiance variations.–Space Sci. Rev. 94: 15–24, 2000.CrossRefGoogle Scholar
  15. Huston M.A., Wolverton S.: The global distribution of net primary production: resolving the paradox.–Ecol. Monogr. 79: 343–377, 2009.CrossRefGoogle Scholar
  16. Keeling R.F.: Development of an Interferometric Oxygen Analyzer for Precise Measurement of the Atmospheric O2 Mole Fraction. Pp. 178.–PhD Thesis, Harvard University, Harvard 1988a.Google Scholar
  17. Keeling R.F.: Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air.–J. Atm. Chem. 7: 153–l76, 1988b.CrossRefGoogle Scholar
  18. Keeling R.F., Najjar R.P., Bender M.L., Tans P.P.: What atmos pheric oxygen measurements can tell us about the global car bon cycle.–Global Biogeochem. Cy. 7: 37–67, 1993.CrossRefGoogle Scholar
  19. Keeling R.F., Garcia H.E.: The change in oceanic O2 inventory associated with recent global warming–P. Natl Acad. Sci. USA 99: 7848–7853, 2002.CrossRefGoogle Scholar
  20. Knox R.S.: Thermodynamics and the primary processes of photosynthesis.–Biophys. J. 9: 1351–1362, 1969.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kopp G., Lean J.L.: A new, lower value of total solar irradiance: Evidence and climate significance.–Geophys. Res. Lett. 38: L01706, 2011.CrossRefGoogle Scholar
  22. Livina V.N., Vaz Martins T.M., Forbes A.B.: Tipping point analysis of atmospheric oxygen concentration.–Chaos 25: 036403, 2015.CrossRefPubMedGoogle Scholar
  23. Long M.C., Deutsch C, Ito T.: Finding forced trends in oceanic oxygen.–Glob. Biogeochem. Cycl. 30: 381–397, 2015.CrossRefGoogle Scholar
  24. McCree K.J.: The action spectrum, absorptance and quantum yield of photosynthesis in crop plants.–Agric. Meteorol. 9: 191–216, 1972.CrossRefGoogle Scholar
  25. Mecherikunnel A.T., Richmond J.C.: Spectral distribution of solar radiation. NASA Report TM 82021. Pp. 86. Goddard Space Flight Center, Greenbelt 1980.Google Scholar
  26. Miller D.P., de Pablo J.J.: Calorimetric solution properties of simple saccharides and their significance for the stabilization of biological structure and function.–J. Phys. Chem. B 104: 8876–8883, 2000.CrossRefGoogle Scholar
  27. Nemani R.R., Keeling C.D., Hashimoto H. et al.: Climate-driven increases in global terrestrial net primary production from 1982 to 1999.–Science 300: 1560–1563, 2003.CrossRefPubMedGoogle Scholar
  28. Paradiso R., Meinen E,. Snel J.F.H. et al.: Spectral dependence of photosynthesis and light absorptance in single leaves and canopy in rose.–Sci. Hortic.-Amsterdam 127: 548–554, 2011.CrossRefGoogle Scholar
  29. Rabinowitch E., Govindjee: Photosynthesis. Pp. 273. John Wiley & Sons, New York 1969.Google Scholar
  30. Running S.W., Zhao M.: User’s guide daily GPP and annual NPP (MOD17A2/A3) products NASA Earth Observing System MODIS land algorithm. SA_MODIS_Land_Algorithm, 2015.Google Scholar
  31. Running S.W., Nemani R.R., Heinsch F.A. et al: A continuous satellite-derived measure of global terrestrial primary production.–BioScience 54: 547–560, 2004.CrossRefGoogle Scholar
  32. Sirignano C., Neubert R.E.M., Rödenbeck C., Meijer H.A.J.: Atmospheric oxygen and carbon dioxide observations from two European coastal stations 2000–2005: continental influence, trend changes and APO climatology.–Atmos. Chem. Phys. 10: 1599–1615, 2010.CrossRefGoogle Scholar
  33. Skulachev V.R.: Bioenergetics: the evolution of molecular mechanisms and the development of bioenergetic concepts.–Anton. Leeuw. 65: 271–284, 1994.CrossRefGoogle Scholar
  34. Yu H., Chin M., Yuan T. et al.: The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations.–Geophys. Res. Lett. 42: 1984–1991, 2015.CrossRefGoogle Scholar
  35. Zagoni M.: A new diagram of Earth’s global energy budget.–Acta Geod. Geophys. 51: 481–492, 2016.CrossRefGoogle Scholar
  36. Zhao M., Running S., Heinsch F.A., Nemani R.: MODIS-derived terrestrial primary production.–In: Ramachandran B., Justice C.O., Abrams J. (ed.): Land Remote Sensing and Global Environmental Change Remote Sensing and Digital Image Processing. Pp. 635–660. Springer, New York 2011.Google Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.A.N. Belozersky Institute of Physico-Chemical Biology in M.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of BiologyLund UniversityLundSweden

Personalised recommendations