Skip to main content

Advertisement

Log in

Prospects of photosynthetic research for increasing agricultural productivity, with emphasis on the tropical C4 Amaranthus and the cassava C3-C4 crops

  • Review
  • Published:
Photosynthetica

Abstract

Productivity of most improved major food crops showed stagnation in the past decades. As human population is projected to reach 9–10 billion by the end of the 21st century, agricultural productivity must be increased to ensure their demands. Photosynthetic capacity is the basic process underlying primary biological productivity in green plants and enhancing it might lead to increasing potential of the crop yields. Several approaches may improve the photosynthetic capacity, including integrated systems management, in order to close wide gaps between actual farmer’s and the optimum obtainable yield. Conventional and molecular genetic improvement to increase leaf net photosynthesis (P N) are viable approaches, which have been recently shown in few crops. Bioengineering the more efficient CC4 into C3 system is another ambitious approach that is currently being applied to the C3 rice crop. Two under-researched, yet old important crops native to the tropic Americas (i.e., the CC4 amaranths and the C3-CC4 intermediate cassava), have shown high potential P N, high productivity, high water use efficiency, and tolerance to heat and drought stresses. These physiological traits make them suitable for future agricultural systems, particularly in a globally warming climate. Work on crop canopy photosynthesis included that on flowering genes, which control formation and decline of the canopy photosynthetic activity, have contributed to the climate change research effort. The plant breeders need to select for higher P N to enhance the yield and crop tolerance to environmental stresses. The plant science instructors, and researchers, for various reasons, need to focus more on tropical species and to use the research, highlighted here, as an example of how to increase their yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APAR:

absorbed photosynthetically active radiation

C a :

ambient CO2 concentration

C i :

intercellular CO2 concentration

CA:

carbonic anhydrase

g s :

stomatal conductance

GDC:

glycine decarboxylase

IRGA:

infra-red gas analyser

LAI:

leaf area/land surface area index

Km :

Michaelis constant

NAD-ME:

NAD-malic enzyme

NADP-ME:

NADP-malic enzyme

P N :

net photosynthetic rate

PEP:

phosphoenolpyruvate

PEPC:

phosphoenolpyruvate carboxylase

PEPCK:

PEP-carboxykinase

PER:

protein efficiency ratio

PNUE:

photosynthetic nitrogen-use efficiency

PPDK:

pyruvate, phosphate dikinase

RUE:

radiation-use efficiency

TCA:

tricarboxylic acid

Vmax :

maximum carboxylation rate

References

  • Affholder F., Poeydebat C., Corbeels M. et al.: The yield gap of major food crops in family agriculture in the tropics: assessment and analysis through field surveys and modelling. — Field Crop. Res. 143: 106–118, 2013.

    Article  Google Scholar 

  • Aguilar L.P.: [Leaf ultrastructure and photosynthesis in different cassava (Manihot esculenta Crantz) cultivars].–BSc. Thesis. Universidad del Cauca, Popayan 1995. [In Spanish]

    Google Scholar 

  • Allem A.C.: The origin and taxonomy of cassava. — In: Hillocks R. J., Thresh J. M., Bellotti A. C. (ed.): Cassava: Biology, Production and Utilization. Pp. 1–16. CABI Publishing, New York 2002.

    Chapter  Google Scholar 

  • Amthor J.S.: From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. — New Phytol. 188: 939–959, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Angelov M.N., Sun J., Byrd G.T. et al.: Novel characteristics of cassava, Manhito esculenta Crantz, a reputed C3-C4 intermediate photosynthesis species. — Photsynth. Res. 38: 61–72, 1993.

    Article  CAS  Google Scholar 

  • Bhatt J.G., Rao M.R.K.: Heterosis in growth and photosynthetic rate in hybrids of cotton. — Euphytica 30: 129–133, 1981.

    Article  Google Scholar 

  • Baker J.M.: “It’s good for many things”: Wixárika (Huichol) ethnoecology of amaranth. — MSc. Thesis. University of Alberta, Edmonton 2006.

    Google Scholar 

  • Bauwe H.: Photosynthetic enzyme activities in C3 and C3-C4 intermediate species of Moricandia and in Panicum millioides. — Photosynthetica 18: 201–209, 1984.

    CAS  Google Scholar 

  • Bauwe H.: Photorespiration: the bridge to C4 photosynthesis. — In: Raghavendra A.S., Sage R.F. (ed.): C4 photosynthesis and related CO2 concentrating mechanisms. Pp. 81–108. Springer, Dordrecht 2011.

    Google Scholar 

  • Berry J.A.: There ought to be an equation for that. — Annu. Rev. Plant Biol. 63: 1–17, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Berry J.O., McCormac D.J., Long J.J. et al.: Photosynthetic gene expression in amaranth, an NAD-ME type C4 dicot. — Aust. J. Plant Physiol. 24: 423–428, 1997.

    Article  CAS  Google Scholar 

  • Björkman O., Gauhl E., Nobs M.A.: Comparative studies of Atriplex species with and without β-carboxylation photosynthesis. — Carnegie Inst. Washington Yearbook 68: 620–633, 1969.

    Google Scholar 

  • Björkman O., Nobs M., Pearcy R. et al.: Characteristics of hybrids between C3 and C4 species of Atriplex. — In: Hatch M.D., Osmond C.B., Slatyer R.O. (ed.): Photosynthesis and Photorespiration. Pp. 105–119. Wiley-Intersci. Publ., New York 1971.

    Google Scholar 

  • Boardman N.K.: Comparative photosynthesis of sun and shade plants. — Annu. Rev. Plant Physio. 28: 355–377, 1977.

    Article  CAS  Google Scholar 

  • Borrell A., Hammer G., van Oosterom E.: Stay-green: A consequence of the balance between supply and demand for nitrogen during grain filling? — Ann. Bot.-London 138: 91–95, 2001.

    Article  Google Scholar 

  • Bowes G., Ogren W.L., Hageman R.H.: Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. — Biochem. Biophys. Res. Comun. 45: 716–722, 1971.

    Article  CAS  Google Scholar 

  • Briggs L.J., Shantz H.L.: Relative water requirement of plants. — J. Agr. Res. 3: 1–63, 1914.

    CAS  Google Scholar 

  • Brownell P.F., Crossland C.J.: The requirement for sodium as a micronutrient by species having C4 dicarboxylic photo-synthetic pathway. — Plant Physiol. 49: 794–797, 1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown R.H.: A difference in the N use efficiency in C3 and C4 plants and its implications in adaptation and evolution. — Crop Sci. 18: 93–98, 1978.

    Article  CAS  Google Scholar 

  • Brown R.H., Byrd G.T., Bouton J.H., Bassett C.L: Photosynthetic characteristics of segregates from hybrids between Flaveria brownii (C4 like) and Flaveria linearis (C3-C4). — Plant Physiol. 101: 825–831, 1993.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burnell J.N., Hatch M.D.: Low bundle sheath carbonic anhydrase is apparently essential for effective C4 pathway operation. — Plant Physiol. 86: 1252–1256, 1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnside C.A., Böhning R.H.: The effect of prolonged shading on the light saturation curves of apparent photosynthesis in sun plants. — Plant Physiol. 32: 61–63, 1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch F.A., Sage T.L., Cousins A.B., Sage R.F.: C3 plants enhance rate of photosynthesis by reassimilating photorespired and respired CO2. — Plant Cell Environ. 36: 200–212, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Calatayud P.A., Barón C.H., Velásquez J.A. et al.: Wild Manihot species do not possess C4 photosynthesis. — Ann. Bot. 89: 125–127, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Castrillo M., Aso P., Longart M., Vermehren A.: In situ immunofluorescent localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in mesophyll of C4 dicotyledonous plants. — Photosynthetica 33: 39–50, 1997.

    Article  CAS  Google Scholar 

  • Cheng S.H., Cao L.Y., Yang S.H., Zhai H.Q.: Forty years’ development of hybrid rice: China’s experience. — Rice Sci. 11: 225–230, 2004.

    Google Scholar 

  • Cheng S.H., Zhuang J.Y., Fan Y.Y. et al.: Progress in research and development on hybrid rice: A super-domesticate in China. — Ann. Bot.-London 100: 959–966, 2007.

    Article  Google Scholar 

  • Cock J.H., Franklin D., Sandoval G., Juri P.: The ideal cassava plant for maximum yield. — Crop Sci. 19: 271–279, 1979.

    Article  Google Scholar 

  • Cock J.H., Riaño N.M., El-Sharkawy M.A. et al.: C3-C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz). II. Initial products of 14CO2 fixation. — Photosynth. Res. 12: 237–241, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Cock J.H., El-Sharkawy M.A.: Physiological characteristics for cassava selection. — Exp. Agri. 24: 443–448, 1988.

    Google Scholar 

  • Connor D.J., Loomis R.S., Cassman K.G.: Crop Ecology: Productivity and Management in Agricultural Systems 2nd Ed. Pp. 562. Cambridge University Press, Cambridge 2011.

    Book  Google Scholar 

  • Connor J.K., Gartner R.J.W., Runge B.M., Amos R.N.: Amaranthus edulis: an ancient food source re-examined. — Aust. J. Exp. Agr. 20: 156–161, 1980.

    Article  Google Scholar 

  • Davis L.C.: Limiting factors in nitrogen fixation. — What’s New in Plant Physiology 11: 41–44, 1980.

    CAS  Google Scholar 

  • de Tafur S.M., El-Sharkawy M.A., Calle F.: Photosynthesis and yield performance of cassava in seasonally dry and semiarid environments. — Photosynthetica 33: 249–257, 1997

    Article  Google Scholar 

  • Döring F., Streubel M., Bräutigam A., Gowik U.: Most photorespiratory genes are preferentially expressed in the bundle sheath cells of the C4 grass Sorghum bicolor. — J. Exp. Bot. March 14, 2016. doi: 10.1093/jxb/erw041.

    Google Scholar 

  • Downton W.J.S.: Amaranthus edulis: a high lysine grain amaranth. — World Crop. 25: 20, 1973.

    Google Scholar 

  • Duvall M.R., Saar D.E., Grayburn W.S., Holbrook G.P.: Complex transitions between C3 and C4 photosynthesis during the evolution of Paniceae: a phylogenetic case study emphasizing the position of Steinchisma hians (Poaceae), a C3-C4 intermediate. — Int. J. Plant Sci. 164: 949–958, 2003.

    Article  CAS  Google Scholar 

  • Edwards G.E., Sheta E., Moore B. et al.: Photosynthetic characteristics of cassava (Manihot esculenta Crantz), a C3 species with chlorenchymatous bundle sheath cells. — Plant Cell Physiol. 31: 1199–1206, 1990.

    CAS  Google Scholar 

  • Ehleringer J.: Ecophysiology of Amaranthus palmeri, a Sonoran desert summer annual. — Oecologia 57: 1071–12, 1983.

    Google Scholar 

  • Elmore C.D., Paul R.N.: Composite list of C4 weeds. — Weed Sci. 31: 686–692, 1983.

    Google Scholar 

  • El-Sharkawy M.A: Factors limiting photosynthetic rates of different plant species. — PhD. Thesis. The University of Arizona, Tucson 1965.

    Google Scholar 

  • El-Sharkawy M.A.: Drought-tolerant cassava for Africa, Asia, and Latin America: breeding projects work to stabilize productivity without increasing pressure on limited natural resources. — BioScience 43: 441–451, 1993.

    Article  Google Scholar 

  • El-Sharkawy M.A.: Cassava biology and physiology. — Plant Mol. Biol. 53: 621–641, 2003.

    Article  Google Scholar 

  • El-Sharkawy M.A.: Cassava biology and physiology. — Plant Mol. Biol. 56: 481–501, 2004.

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy M.A.: How can calibrated research-based models be improved for use as a tool in identifying genes controlling crop tolerance to environmental stresses in the era of genomics — from an experimentalist’s perspective. — Photosynthetica 43: 161–176, 2005.

    Article  Google Scholar 

  • El-Sharkawy M.A.: International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. — Photosynthetica 44: 481–512, 2006.

    Article  CAS  Google Scholar 

  • El-Sharkawy M.A.: Pioneering research on C4 photosynthesis: Implications for crop water relations and productivity in comparison to C3 cropping systems. — J. Food Agric. Environ. 7: 468–484, 2009a.

    CAS  Google Scholar 

  • El-Sharkawy M.A.: Pioneering research on C4 leaf anatomical, physiological, and agronomic characteristics of tropical monocot and dicot plant species: Implications for crop water relations and productivity in comparison to C3 cropping systems. — Photosynthetica 47: 163–183, 2009b.

    Article  Google Scholar 

  • El-Sharkawy M.A.: Cassava: physiological mechanisms and plant traits underlying tolerance to prolonged drought and their application for breeding improved cultivars in the seasonally dry and semiarid tropics. — In: DaMatta F.M. (ed.): Ecophysiology of Tropical Tree Crops. Pp. 71–110. Nova Sci. Publ., New York 2010.

    Google Scholar 

  • El-Sharkawy M.A.: Stress-tolerant cassava: the role of integrative ecophysiology-breeding research in crop improvement. — Open J. Soil Sci. 2: 162–186, 2012.

    Article  Google Scholar 

  • El-Sharkawy M.A.: Global warming: causes and impacts on agroecosystems productivity and food security with emphasis on cassava comparative advantage in the tropics/subtropics. — Photosynthetica 52: 161–178, 2014.

    Article  Google Scholar 

  • El-Sharkawy M.A., Cock J.H.: Water use efficiency of cassava. I. Effects of air humidity and water stress on stomatal conductance and gas exchange. — Crop Sci. 24: 497–502, 1984.

    Article  Google Scholar 

  • El-Sharkawy M.A., Cock J.H.: C3-C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz).I. Gas exchange. — Phototsynth. Res. 12: 219–235, 1987a.

    Article  CAS  Google Scholar 

  • El-Sharkawy M.A., Cock J.H.: Response of cassava to water stress. — Plant Soil 100: 345–360, 1987b.

    Article  Google Scholar 

  • El-Sharkawy M.A., Cock J.H.: Photosynthesis of cassava (Manihot esculenta Crantz). — Exp. Agri. 26: 325–340, 1990.

    Article  CAS  Google Scholar 

  • El-Sharkawy M.A., de Tafur S.M.: Genotypic and within canopy variation in leaf carbon isotope discrimination and its relation to short-term leaf gas exchange characteristics in cassava grown under rain-fed conditions in the tropics. — Photosynthetica 45: 515–526, 2007.

    Article  Google Scholar 

  • El-Sharkawy M.A., de Tafur S.M.: Comparative photosynthesis, growth, productivity, and nutrient use efficiency among talland short-stemmed rain-fed cassava cultivars. — Photosynthetica 48: 173–188, 2010.

    Article  Google Scholar 

  • El-Sharkawy M.A., Hesketh J.D.: Effects of temperature and water deficit on leaf photosynthetic rates of different species. — Crop Sci. 4: 514–518, 1964.

    Article  Google Scholar 

  • El-Sharkawy M., Hesketh J.: Photosynthesis among species in relation to characteristics of leaf anatomy and CO2 diffusion resistances. — Crop Sci. 5: 517–521, 1965.

    Article  Google Scholar 

  • El-Sharkawy M.A., Hesketh J.D.: Citation Classic-Photosynthesis among species in relation to characteristics of leaf anatomy and CO2 diffusion resistances. — Curr. Cont. /Agr. Biol. Environ. 27: 14, 1986.

    Google Scholar 

  • El-Sharkawy M.A., Cock J.H., de Cadena G.: Influence of differences of leaf anatomy on net photosynthetic rates of some cultivars of cassava. — Photosynth. Res. 5: 235–242, 1984a.

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy M.A., Cock J.H., de Cadena G.: Stomatal characteristics among cassava cultivars and their relation to gas exchange. — Exp. Agri. 20: 67–76, 1984b.

    Article  Google Scholar 

  • El-Sharkawy M.A., Cock J.H., Held A.A.: Photosynthetic responses of cassava cultivars (Manihot esculenta Crantz) from different habitats to temperature. — Photosynth. Res. 5: 243–250, 1984c.

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy M.A., Cock J.H., Held A.A.: Water use efficiency of cassava. II: Differing sensitivity of stomata to air humidity in cassava and other warm climate species. — Crop Sci. 24: 503–507, 1984d.

    Article  Google Scholar 

  • El-Sharkawy M.A., Cock J.H., Hernandez A.D.P.: Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. — Photosynth. Res. 7: 137–149, 1985.

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy M.A., de Tafur S.M., Cadavid L.F.: Potential photosynthesis of cassava as affected by growth conditions. — Crop Sci. 32: 1336–1342, 1992a.

    Article  Google Scholar 

  • El-Sharkawy M.A., de Tafur S.M., Cadavid L.F.: Photosynthesis of cassava and its relation to crop productivity. — Photosynthetica 28: 431–438, 1993.

    Google Scholar 

  • El-Sharkawy M.A., de Tafur S.M., Lopez Y.: Cassava productivity, photosynthesis, ecophysiology, and response to environmental stresses in the tropics: a multidisciplinary approach to crop improvement and sustainable production. — In: Ospina B., Ceballos H. (ed.): Cassava in the Third Millennium: Modern Production, Processing, Use, and Marketing Systems. Pp. 29–88. CIAT, Cali 2012a.

    Google Scholar 

  • El-Sharkawy M.A., de Tafur S.M., Lopez Y.: Integrative ecophysiological research for breeding improved cassava cultivars in favorable and stressful environments in the tropical/subtropical bio-systems. — In: Gorawala P., Mandhatri S. (ed.): Agricultural Research Updates, Vol. 4. Pp. 1–76. Nova Sci. Publ., New York 2012b.

    Google Scholar 

  • El-Sharkawy M.A., Hernández A.D.P., Hershey C.: Yield stability of cassava during prolonged mid-season water stress. — Exp. Agr. 28: 165–174, 1992b.

    Article  Google Scholar 

  • El-Sharkawy M.A., Hesketh J., Muramoto H.: Leaf photosynthetic rates and other growth characteristics among 26 species of Gossypium. — Crop Sci. 5: 173–175, 1965.

    Article  CAS  Google Scholar 

  • El-Sharkawy M.A., Loomis R.S., Williams W.A.: Apparent reassimilation of respiratory carbon dioxide by different plant species. — Physiol. Plantarum 20: 171–186, 1967.

    Article  CAS  Google Scholar 

  • El-Sharkawy M.A., Loomis R.S., Williams W.A.: Photosynthetic and respiratory exchanges of carbon dioxide by leaves of grain amaranth. — J. Appl. Ecol. 5: 243–251, 1968.

    Article  Google Scholar 

  • El-Sharkawy M.A., Lopez Y., Bernal L.M.: Genotypic variations in activities of phosphoenolpyruvate carboxylase (PEPC) and correlations with leaf photosynthetic characteristics and crop productivity of cassava grown in lowland seasonally dry tropics. — Photosynthetica 46: 238–247, 2008.

    Article  CAS  Google Scholar 

  • El-Sharkawy M.A., Cock J.H., Lynam J.K. et al.: Relationships between biomass, root-yield and single-leaf photosynthesis in field-grown cassava. — Field Crop. Res. 25: 183–201, 1990.

    Article  Google Scholar 

  • Evans L.T.: Crop Evolution, Adaptation and Yield. Pp. 500. Cambridge University Press, Cambridge 1993.

    Google Scholar 

  • Everson R.G., Slack. C.R.: Distribution of carbonic anhydrase in relation to the C4 pathway of photosynthesis. — Phytochemistry 7: 581–584, 1968.

    Article  CAS  Google Scholar 

  • FAO: Adaptation to climate change in agriculture, forestry and fisheries: perspective, framework and priorities. Pp. 24. FAO, Rome 2007.

    Google Scholar 

  • Fedoroff N.V.: McClintock’s challenge in the 21st century. — P. Natl. Acad. Sci. USA 109: 20200–20203, 2012.

    Article  CAS  Google Scholar 

  • Fischer R.A., Byerlee D., Edmeades G.O.: Crop Yields and Global Food Security: will Yield Increase Continue to Feed the World?. Pp. 634. Austr. Centre Int. Agr. Res., Canberra 2014.

    Google Scholar 

  • Fischer R.A., Rees D., Sayre K.D et al.: Wheat yield progress is associated with higher stomatal conductance, higher photosynthetic rate and cooler canopies. — Crop Sci. 38: 1467–1475, 1998.

    Article  Google Scholar 

  • Fisher A.E., McDade L.A., Kiel C.A. et al: Evolutionary history of Blepharis (Acanthaceae) and the origin of C4 photosynthesis in section Acanthodium. — Int. J. Plant Sci. 176: 770–790, 2015.

    Article  Google Scholar 

  • George T.S., Hawes C., Newton A.C. et al.: Field phenotyping and long-term platforms to characterise how crop genotypes interact with soil processes and the environment.–Agronomy 4: 242–278, 2014.

    Article  Google Scholar 

  • Gibbons A.: New view of early Amazonia. — Science 248: 1488–1490, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Gilmanov T.G., Baker J.M., Bernachii C.J. et al.: Productivity and carbon dioxide exchange of leguminous crops: estimates from flux towers measurements. — Agron. J. 106: 545–559, 2014.

    Article  CAS  Google Scholar 

  • Gowik U., Westhoff P.: The path from C3 to C4 photosynthesis. — Plant Physiol. 155: 56–63, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gready J.E., Dwyer S.A., Evans J.R. (ed.).: Applying Photosynthesis Research to Improvement of Food Crops. Proceedings of a Workshop Held at the Australian National University, Canberra, ACT, Australia, 2–4 September 2009. Pp. 145. ACIAR Proceedings 140. Austr. Centre Int. Agr. Res., Canberra 2013.

    Google Scholar 

  • Hand D.W., Warren Wilson J., Acock B.: Effects of light and CO2 on net photosynthetic rates of stands of aubergine and Amaranthus. — Ann. Bot.-London 71: 209–216, 1993.

    Article  CAS  Google Scholar 

  • Hatch M.D., Burnell J.M.: Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis. — Plant Physiol. 93: 825–828, 1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatch M.D., Slack C.R.: Photosynthetic CO2-fixation pathways. — Annu. Rev. Plant Physio. 21: 141–162, 1970.

    Article  CAS  Google Scholar 

  • Hatch M.D., Slack C.R., Johnson H.S.: Further studies on a new pathway of photosynthetic CO2 fixation in sugar cane and its occurrence in other plant species. — Biochem. J. 102: 417–422, 1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield J.L., Walthall C.L.: Meeting global food needs: realizing the potential via genetics x environment x management interactions. — Agron. J. 107: 1215–1226, 2015.

    Article  Google Scholar 

  • Hauptli H., Jain S.K.: Biosystematics and agronomic potential of some weedy and cultivated amaranths. — Theor. Appl. Genet. 52: 177–185, 1978.

    Article  CAS  PubMed  Google Scholar 

  • Hershey C.H., Jennings D.L.: Progress in breeding cassava for adaptation to stress. — Plant Breed. Abstr. 62: 823–831, 1992.

    Google Scholar 

  • Hesketh J., Muramoto H., El-Sharkawy M.: Carbonic Anhydrase and Photosynthesis in Leaves among Species. Rep. no. 2 on Photosynthesis. Pp. 15. Dept. Plant Breeding, Univ. Arizona, Tucson 1965.

    Google Scholar 

  • Hong J., Jiang D.-A, Weng X.-Y et al.: Leaf anatomy,chloroplast ultrastructure, and cellular localization of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and RuBPCO activase in Amaranthus tricolor L. — Photosynthetica 43: 519–528, 2005.

    Article  CAS  Google Scholar 

  • Holaday A.S., Chollet R.: Photosynthetic/photorespiratory characteristics of C3-C4 intermediate species. — Photosynth. Res. 5: 307–323, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Holaday A.S., Brown R.H., Bartlett J.M. et al.: Enzymic and photosynthetic characteristics of reciprocal F1 hybrids of Flaveria pringlei (C3) and Flaveria brownii (C4-like species). — Plant Physiol. 87: 484–490, 1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houghton R.A.: Carbon. — In: Turner B.L., Clark W.C., Kates R.W. et al. (ed.).: The Earth as Transformed by Human Action. Pp. 393–408. Cambridge University Press, Cambridge 1990.

    Google Scholar 

  • Huang X., Yang S., Gong J. et al.: Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. — Nat. Commun. 6: 6258, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hylton C.M., Rawsthorne S., Smith A.M. et al.: Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3-C4 intermediate species. — Planta. 175: 452–459, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev A.U., Roussel M.R.: Feedforward non-Michaelis-Menten mechanism for CO2 uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation. — Biosystems 107: 158–166, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev A.U.: Control of Rubisco function via homeostatic equilibration of CO2 supply. — Front. Plant Sci. 6: 106, 2015.

    PubMed  PubMed Central  Google Scholar 

  • Jackson W.A., Volk R.J.: Oxygen uptake by illuminated maize leaves. — Nature 222: 269–271, 1969.

    Article  CAS  PubMed  Google Scholar 

  • Jackson W.A., Volk R.J.: Photorespiration. — Annu. Rev. Plant Physio. 21: 385–432, 1970.

    Article  CAS  Google Scholar 

  • Jarvis A., Ramirez-Villegas J., Herrera Campo J.B., Navarro-Racines C.: Is cassava the answer to African climate change adaptation? — Tropical Plant Biol. 5: 9–29, 2012.

    Article  Google Scholar 

  • Johnson B.L., Henderson T.L.: Water use patterns of grain amaranth in the northern great plains. — Agron. J. 94: 1437–1443, 2002.

    Article  Google Scholar 

  • Johnston M., Grof C.P.L., Brownell P.F.: Responses to ambient CO2 concentrations by sodium-deficient C4 plants. — Aust. J. Plant Physiol. 11: 137–141, 1984.

    Article  CAS  Google Scholar 

  • Kelly J.G., Latzko E.: Thirty Years of Photosynthesis. 1974 — 2004. Pp. 414. Springer, Berlin-Heidelberg-New York 2006.

    Google Scholar 

  • Keerberg O., Pämik T., Ivanova H. et al.: C2 photosynthesis generates about 3-fold elevated leaf CO2 levels in the C3–C4 intermediate species Flaveria pubescens. — J. Exp. Bot. 65: 3649–3656, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kering M.K.: Manganese nutrition and photosynthesis in NAD-malic enzyme C4 plants. — Ph.D. Thesis. The University of Missouri, Columbia 2008.

    Google Scholar 

  • Kiirats O., Lea P.J., Franceschi V.R., Edwards G.E.: Bundle sheath diffusive resistance to CO2 and effectiveness of C4 photosynthesis and refixation of photorespired CO2 in C4 cycle mutant and wild-type Amaranthus edulis. — Plant Physiol. 130: 964–976, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiniry J.R., Jones C.A., O’Toole J.C. et al.: Radiation-use efficiency in biomass accumulation prior to grain-filling for five grain-crop species. — Field Crop. Res. 20: 51–64, 1989.

    Article  Google Scholar 

  • Kirkham M.B.: Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations. Pp. 399. CRC Press, Boca Raton 2011.

    Book  Google Scholar 

  • Kennedy R.A., Laetsch W.M.: Plant species intermediate for C3, C4 photosynthesis. — Science 184: 1087–1089, 1974.

    Article  CAS  PubMed  Google Scholar 

  • Kozaki A., Takeba G.: Photorespiration protects C3 plants from photooxidation. — Nature 384: 557–560, 1996.

    Article  CAS  Google Scholar 

  • Laetsch W.M.: The C4 syndrome: a structural analysis. — Annu. Rev. Plant Physio. 25: 27–52, 1974.

    Article  CAS  Google Scholar 

  • Langdale J.A., Nelson T.: Spatial regulation of photosynthetic development. — Trends Genet. 7: 191–196, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J.W: Hybridization and growth studies in the grain amaranths (Amaranthus hybridus L.). — Ph.D. Thesis. Iowa State University, Ames 1989.

    Google Scholar 

  • Lenis J.I., Calle F., Jaramillo G. et al.: Leaf retention and cassava productivity. — Field Crop. Res. 95: 126–134, 2006.

    Article  Google Scholar 

  • Lester J.N., Goldsworthy A.: The occurrence of high CO2-compensation points in Amaranthus species. — J. Exp. Bot. 24: 1031–1034, 1973.

    Article  CAS  Google Scholar 

  • Lin Z.F., Ehleringer J.: Photosynthetic characteristics of Amaranthus tricolor, a C4 tropical leafy vegetable. — Photosynth. Res. 4: 171–178, 1983.

    Article  CAS  Google Scholar 

  • Lindquist J.L., Arkebauer T.J., Walters D.T. et al.: Maize radiation use efficiency under optimal growth conditions. — Agron. J. 97: 72–78, 2005.

    Article  Google Scholar 

  • Liu Y., Wu L., Baddeley J.A. Watson C.A.: Models of biological nitrogen fixation of legumes. A review. — Agron. Sustain. Dev. 31: 155–172, 2011.

    Article  Google Scholar 

  • Lobell D.B., Cassman K.G., Field C.B.: Crop Yield Gaps: Their Importance, Magnitudes, and Causes. — Annu. Rev. Env. Resour. 34: 179–204, 2009

    Article  Google Scholar 

  • Loomis R.S., Amthor J.S.: Yield potential, plant assimilatory capacity, and metabolic efficiencies. — Crop Sci. 39: 1584–1596, 1999.

    Article  CAS  Google Scholar 

  • Long S.P., Ainsworth E.A., Leakey A.D.B. et al.: Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentration. — Science 312: 1918–1921, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Lundgren M.R., Osborne C.P., Christin P.-A.: Deconstructing Kranz anatomy to understand C4 evolution. — J. Exp. Bot. 65: 3357–3369, 2014.

    Article  PubMed  Google Scholar 

  • Lutz W., Butz W.P., Samir K.C. (ed.): World Population and Human Capital in the Twenty-First Century. Pp. 1072. Oxford Univ. Press, Oxford 2014.

    Book  Google Scholar 

  • Lynch J.P.: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture. — Plant Cell Environ. 38: 1775–1784, 2015.

    Article  PubMed  Google Scholar 

  • Magnin N.C., Cooley B.A., Reiskind J.B., Bowes G.: Regulation and localization of key enzymes during the induction of Kranzless, C4–type photosynthesis in Hydrilla verticillata. — Plant Physiol. 115: 1681–1689, 1997.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milthorpe F.L. (ed.).: The Growth of Leaves. Pp. 223. Butterworth’s Sci. Publ., London. 1956.

    Google Scholar 

  • Monson R.K.: On the evolutionary pathways resulting in C4 photosynthesis and crassulacean acid metabolism (CAM). — Adv. Ecol. Res. 19: 57–110, 1989.

    Article  Google Scholar 

  • Monson R.K., Rawsthorne S.: Carbon dioxide assimilation in C3–C4 intermediate plants. — In: Leegood R.C., Sharkey T.D., von Caemmerer S.(ed.): Photosynthesis: Physiology and Metabolism. Pp. 533–550. Kluwer Academic Press, Dordrecht 2000.

    Chapter  Google Scholar 

  • Monson R.K., Edwards G.E., Ku M.S.B.: C3-C4 intermediate photosynthesis in plants. — BioScience 34: 563–574, 1984.

    Article  CAS  Google Scholar 

  • Muramoto H., Hesketh J., El-Sharkawy M.A.: Relationships among rate of leaf area development, photosynthetic rate, and rate of dry matter production among American cultivated cottons and other species. — Crop Sci. 5: 163–166, 1965.

    Article  Google Scholar 

  • Nasyrov Y.S.: Genetic control of photosynthesis and improving of crop productivity. — Annu. Rev. Plant Physio. 29: 215–237, 1978.

    Article  CAS  Google Scholar 

  • Nasyrov Y.S.: Genetic modification of the CO2 carboxylation reactions as a factor improving efficiency of photosynthesis. — Indian J. Plant Physiol. 24: 26–36, 1981.

    CAS  Google Scholar 

  • Nelson T., Langdale J.A.: Pattern of leaf development in C4 plants. — Plant Cell 1: 3–13, 1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson T., Langdale J.A.: Developmental genetics of C4 photosynthesis. — Annu. Rev. Plant Phys. 43: 25–47, 1992.

    Article  CAS  Google Scholar 

  • NRC (National Research Council).: Amaranthus: Modern Prospects for an Ancient Crop. Pp. 80. Nat. Acad. Press, Wahington, D.C. 1984.

    Google Scholar 

  • NRC (National Research Council).: Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation. Pp. 415. Nat. Acad. Press, Washington, D.C. 1989.

    Google Scholar 

  • Oakley J.C., Sultmanis S., Stinson C.R. et al.: Comparative studies of C3 and C4 Atriplex hybrids in the genomics era: physiological assessments. — J. Exp. Bot. 65: 3637–3647, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oaks A.: Efficiency of nitrogen utilization in C3 and C4 cereals. — Plant Physiol. 106: 407–414, 1994.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogren W.L.: Photorespiration: pathways, regulation, and modification. — Annu. Rev. Plant Physio. 35: 415–442, 1984.

    Article  CAS  Google Scholar 

  • Parry M.A.J., Reynolds M.P., Salvucci M.E. et al.: Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. — J. Exp. Bot. 62: 453–467, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Pearcy R.W., Ehleringer J.: Comparative ecophysiology of C3 and C4 plants. — Plant Cell Environ. 7: 1–13, 1984.

    Article  CAS  Google Scholar 

  • Pellet D., El-Sharkawy M.A.: Cassava response to phosphorus fertilization. I. Yield, biomass and gas exchange. — Field Crop. Res. 35: 1–11, 1993.

    Article  Google Scholar 

  • Pellet D., El-Sharkawy M. A.: Sink Source relations in cassava: effects of reciprocal grafting on yield and leaf photosynthesis. — Exp. Agri. 30: 359–367, 1994.

    Article  Google Scholar 

  • Peng S., Huang J., Sheehy J.E. et al.: Rice yields decline with higher night temperature from global warming. — P. Natl. Acad. Sci. USA 101: 9971–9975, 2004.

    Article  CAS  Google Scholar 

  • Penning de Vries F.W.T., Jansen D.M., ten Berge H.FM., Bakema A.: Simulation of Ecophysiological Processes of Growth in Several Annual Crops. Pp. 271. PUDOC, Wangeningen 1989.

    Google Scholar 

  • Phillips D.A.: Efficiency of symbiotic nitrogen fixation in legumes. — Annu. Rev. Plant Physio. 31: 29–49, 1980.

    Article  CAS  Google Scholar 

  • Poorter H., Niinemets Ü., Poorter L. et al.: Causes and consequences of variation in leaf mass per area (LMA): a metaanalysis. — New Phytol. 182: 565–588, 2009.

    Article  PubMed  Google Scholar 

  • Porter J.R., Xie L., Challinor A.J. et al.: IPCC: Food Security and Food Production Systems (WG II AR5), Chap. 7. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Pp. 485–533. Cambridge and New York 2014.

    Google Scholar 

  • Porto M.C.M.: Physiological mechanisms of drought tolerance in cassava (Manihot esculenta Crantz). — PhD. Thesis. The University of Arizona, Tucson 1983.

    Google Scholar 

  • Rabbi I., Hamblin M., Gedil M. et al.: Genetic mapping using genotyping-by-sequencing in the clonally propagated cassava. — Crop Sci. 54: 1–13, 2014.

    Article  CAS  Google Scholar 

  • Rawsthorne S.: C3-C4 intermediate photosynthesis: linking physiology to gene expression. — Plant J. 2: 267–274, 1992.

    Article  CAS  Google Scholar 

  • Ray D.K., Mueller N.D., West P.C., Foley J.A.: Yield trends are insufficient to double global food production by 2050.— PloS One 8: e66428, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiskind J.B., Madsen T.V., Van Ginkel L.C., Bowes G.: Evidence that inducible C4-type photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla, a submersed monocot. — Plant Cell Environ. 20: 211–220, 1997.

    Article  CAS  Google Scholar 

  • Renvoize B.S.: The area of origin of Manihot esculenta. — Econ. Bot. 26: 352–360, 1972.

    Article  Google Scholar 

  • Reynolds M., Foulkes J., Furbank R. et al.: Achieving yield gains in wheat. — Plant Cell Environ. 35: 1799–1823, 2012.

    Article  PubMed  Google Scholar 

  • Riaño N.M., Cock J.H., Lopez F.Y., El-Sharkawy M A.: [Kranz anatomy, structure, and distribution of chloroplasts in cassava (Manihot esculenta Crantz) leaves]. — Revista Comalfi 14: 5–12, 1987a. [In Spanish]

    Google Scholar 

  • Riaño M.A., Cock J.H., López Y. et al.: [Photosynthetic characteristics of cassava (Manihot esculenta Crantz): initial products of 14CO2 fixation]. — Revista Comalfi 14: 13–17, 1987b. [In Spanish]

    Google Scholar 

  • Rosenthal D., Ort D.R.: Examining cassava’s potential to enhance food security under climate change. — Trop. Plant Biol. 5: 30–38, 2012.

    Article  Google Scholar 

  • Rylott E.L., Metzlaff K., Rawsthorne S.: Developmental and environmental effects on the expression of the C3-C4 intermediate phenotypes in Moricandia arvensis. — Plant Physiol. 118: 1277–1284,1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage R.F.: The evolution of C4 photosynthesis. — New Phytol. 161: 341–370, 2004.

    Article  CAS  Google Scholar 

  • Sage R.F.: Photorespiratory compensation: a driver for biological diversity. — Plant Biol. 15: 624–638, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Sage R.F., Pearcy R.W.: The nitrogen use efficiency of C3 and C4 plants I. Leaf nitrogen, growth, and biomass partitioning in Chenopodium album (L.) and Amaranthus retroflexus (L.). — Plant Physiol. 84: 954–958, 1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage R.F., Seemann J.R.: Regulation of ribulose- 1,5-bisphosphate carboxylase/oxygenase activity in response to reduced light intensity in C4 plants. — Plant Physiol. 102: 21–28, 1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage R.F., Christin P.-A., Edwards E.K.: The C4 plant lineages of planet Earth. — J. Exp. Bot. 62: 3155–3169, 2011a.

    Article  CAS  PubMed  Google Scholar 

  • Sage R.F., Sage T.L., Kocacinar F.: Photorespiration and the Evolution of C4 photosynthesis. — Annu. Rev. Plant Biol. 63: 19–47, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Sage R.F., Sage T.L., Pearcy R.W., Borsch T.: The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. — Am. J. Bot. 94: 1992–2003, 2007.

    Article  PubMed  Google Scholar 

  • Sage T.L., Busch F.A., Johnson D.C. et al: Initial events during the evolution of C4 photosynthesis in C3 species of Flaveria. — Plant Physiol. 163: 1266–1276, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage T.L., Sage R.F., Vogan P.J. et al.: The occurrence of C2 photosynthesis in Euphorbia subgenus Chamaesyce (Euphorbiaceae). — J. Exp. Bot. 62: 3183–3195, 2011b

    Article  CAS  PubMed  Google Scholar 

  • Saithong T., Rongsirikul O., Kalapanulak S. et al.: Starch biosynthesis in cassava: a genome-based pathway reconstruction and its exploitation in data integration. — BMC Syst. Biol. 7: 75, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasson A.: Feeding Tomorrow’s World. Pp. 805. UNISCO/CTA, Paris 1990.

    Google Scholar 

  • Sauer J.D.: The grain Amaranths: A Survey of their History and Classification. — Ann. Mo. Bot. Gard. 37: 561–632, 1950.

    Article  Google Scholar 

  • Sauer J.D: The Grain Amaranths and their Relatives: A Revised Taxonomic and Geographic Survey. — Ann. Mo. Bot. Gard. 54: 103–137, 1967.

    Article  Google Scholar 

  • Sawada S., Sakamoto T., Sato M. et al.: Photosynthesis with single-rooted Amaranthus leaves. II. Regulation of ribulose-1,5-bisphosphate carboxylase, phosphoenolpyruvate carboxylase, NAD-malic enzyme and NAD-malate dehydrogenase and coordination between PCR and C4 photosynthetic metabolism in response to changes in the source-sink balance. — Plant Cell Physiol. 43: 1293–1301, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Schonbeck M.: Weed Profile: Pigweeds (Amaranthus spp.). — eXtension, March 10, 2014. http://www.extension.org/pages/65208/weed-profile:-pigweeds-amaranthus-spp#.VhvG8_mqqkp

    Google Scholar 

  • Shantz H.L., Piemeisel L.N.: The water requirements of plants at Akron, CO. — J. Agr. Res. 34: 1093–1190, 1927.

    Google Scholar 

  • Sheehy J.E., Mitchell P.L., Hardy B. (ed.): Redesigning rice Photosynthesis to increase Yield. Proceedings of the Workshop on The Quest to Reduce Hunger: Redesigning Rice Photosynthesis, 30 Nov.-3 Dec. 1999. Los Baños, Philippines. Makati City (Philippines). Pp. 293. Elsevier Sci., Amsterdam 2000.

    Google Scholar 

  • Sheehy J.E., Mitchel P.L., Hardy B. (ed.): Charting New Pathways to C4 Rice. Pp 422. Int. Rice Res. Inst. Los Baños 2007.

    Google Scholar 

  • Sheen J.Y.: C4 gene expression. — Annu. Rev. Plant Phys. 50: 187–217, 1999.

    Article  CAS  Google Scholar 

  • Sinclair T.R., Horie T.: Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review. — Crop Sci. 29: 90–98, 1989.

    Article  Google Scholar 

  • Sinclair T.R., Muchow R.C.: Radiation use efficiency. — Adv. Agron. 65: 215–265, 1999.

    Article  Google Scholar 

  • Stoy V.: Interrelationships Among Photosynthesis, Respiration, and Movement of Carbon in Developing Crops. Pp. 24. Agr. & Hortic. Dep. Univ. Nebrasca, Lincoln 1969.

    Google Scholar 

  • Tanz S.K., Tetu S.G., Vella N.G.F., Ludwig M.: Loss of the transit peptide and an increase in gene expression of an ancestral chloroplastic carbonic anhydrase were instrumental in the evolution of the cytosolic C4 carbonic anhydrase in Flaveria. — Plant Physiol. 150: 1515–1529, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tazoe Y., Noguchi K.O., Terashima I.: Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant, Amaranthus cruentus. — Plant Cell Environ. 29: 691–700, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Tittonell P., Giller K.E.: When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. — Field Crop. Res. 143: 76–90, 2013.

    Article  Google Scholar 

  • Tolbert N.E.: Microbodies-peroxisomes and glyoxysomes. — Annu. Rev. Plant Physio. 22: 45–74, 1971.

    Article  CAS  Google Scholar 

  • Tolbert N.E., Oeser A., Yamazaki R.K. et al.: A survey of plants for peroxisomes. — Plant Physiol. 44: 135–147, 1969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triolo L., Bagnara D., Anselmi L., Bassanelli C.: Carbonic anhydrase activity and localization in some plant species. — Physiol. Plantarum 31: 86–89, 1974.

    Article  CAS  Google Scholar 

  • Tubiello F.N., Soussana J-F., Howden S.M.: Crop and pasture response to climate Change. — P. Natl. Acad. Sci. USA 104: 19686–19690. 2007.

    Article  CAS  Google Scholar 

  • Tucker J.B.: Amaranth: the once and future crop. — BioScience 36: 9–13, 1986.

    Article  Google Scholar 

  • Ueno O.: Immunocytochemical localization of enzymes involved in the C3 and C4 pathways in the photosynthetic cells of an amphibious sedge, Eleocharis vivipara. — Planta 199: 394–403, 1996.

    CAS  Google Scholar 

  • Ueno O.: Environmental regulation of C3 and C4 differentiation in the amphibious sedge, Eleocharis vivipara. — Plant Physiol. 127: 1524–1532, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno O., Agarie S.: The intercellular distribution of glycine decarboxylase in leaves of cassava in relation to the photosynthetic mode and leaf anatomy. — Jap. J. Crop Sci. 66: 268–278, 1997.

    Article  CAS  Google Scholar 

  • Ugent D., Pozorski S., Pozorski T.: Archaeological manioc (Manihot) from coastal Peru. — Econ. Bot. 40: 78–102, 1986.

    Article  Google Scholar 

  • van Ittersum M.K., Cassman K.G., Grassini P. et al.: Yield gap analysis with local to global relevance — A review. — Field Crop. Res. 143: 4–17, 2013.

    Article  Google Scholar 

  • Vance C.P., Heichel G.H.: Carbon in N2 fixation: limitation or exquisite adaptation. — Annu. Rev. Plant Phys. 42: 373–390, 1991.

    Article  CAS  Google Scholar 

  • Veltkamp H.J.: Physiological causes of yield variation in cassava (Manihot esculenta Crantz). — PhD. Thesis, Wageningen Agricultural University, Wageningen 1986.

    Google Scholar 

  • Volk R.J., Jackson W.A.: Photorespiratory phenomena in maize. — Plant Physiol. 49: 218–223, 1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Caemmerer S., Furbank R.T. (ed.): C4 photosynthesis: 30 (or 40) years on. — Aust. J. Plant Physiol. 24: 409–555, 1997.

    Article  Google Scholar 

  • Voznesenskaya E.V., Franceschi V.R., Kiirats O. et al.: Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). — Plant J. 31: 649–662, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Voznesenskaya E.V., Franceschi V.R., Kiirats O. et al.: Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. — Nature 414: 543–546, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Voznesenskaya E.V., Koteyeva1 N.K., Edwards G.E., Ocampo G.: Revealing diversity in structural and biochemical forms of C4 photosynthesis and a C3–C4 intermediate in genus Portulaca L. (Portulacaceae). — J. Exp. Bot. 61: 3647–3662, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J.L., Klessig D.F., Berry J.O.: Regulation of C4 gene expression in developing Amaranth leaves. — Plant Cell 4: 173–184, 1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster T.M.: Weed survey — southern states. Vegetable, fruit and nut crops subsection. — Proc. South. Weed Sci. Soc. 59: 260–277, 2006.

    Google Scholar 

  • Westhoff P., Gowik U.: Evolution of C4 phosphoenolpyruvate carboxylase-genes and proteins: a case study with the genus Flaveria. — Ann. Bot.-London 93: 13–23, 2004.

    Article  CAS  Google Scholar 

  • Whitehead W.F., Carter J., Singh B.P.: Effect of planting date on vegetable amaranth leaf yield, plant height, and gas exchange. — HortScience 37: 773–777, 2002.

    Google Scholar 

  • Wu X-Y., Gu W., Wu G.-Y.: Rubisco from Amaranthus hypochondriacus. — In: Baltscheffsky M. (ed.): Current Research in Photosynthesis, vol. III. Pp. 339–342. Kluwer Academic Publishers, Dordrecht 1990.

    Google Scholar 

  • Yin X., Struik P.C.: Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology. — J. Exp. Bot. 66: 6535–6549, 2015

    Article  PubMed  Google Scholar 

  • Zahran H.H.: Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. — Microbiol. Mol. Biol. Rev. 63: 968–989,1999.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zelitch I.: The close relationship between net photosynthesis and crop yield. — BioScience 32: 796–802, 1982.

    Article  Google Scholar 

  • Zhu X.-G., Long S.P., Ort D.R.: Improving photosynthetic efficiency for greater yield. — Annu. Rev. Plant Biol. 61: 235–261, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Ziska L.H., Dukes J.F. (ed.): Invasive Species and Global Climate Change. Pp 368. CABI, Wallingford 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. El-Sharkawy.

Additional information

Acknowledgements: I am grateful to the Photosynthetica’s invitation to write this review, and to the Natives of the Americas, who provided us with the opportunity to research, and rediscover the high photosynthetic capacities of the C4 amaranths, and the C3-C4 intermediate cassava. Invaluable comments by M.B. Kirkham, A.U Igamberdiev, J.D. Hesketh, and from Photosynthetica reviewers and editors were included in the final version. The many articles reprints received from R.F. Sage and J.P. Lynch were appreciated. Thanks to S.M. de Tafur, S. Navarro de El-Sharkawy, and F. El-Sharkawy Navarro, for their needed support and assistance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sharkawy, M.A. Prospects of photosynthetic research for increasing agricultural productivity, with emphasis on the tropical C4 Amaranthus and the cassava C3-C4 crops. Photosynthetica 54, 161–184 (2016). https://doi.org/10.1007/s11099-016-0204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0204-z

Additional key words

Navigation