, Volume 54, Issue 2, pp 161–184 | Cite as

Prospects of photosynthetic research for increasing agricultural productivity, with emphasis on the tropical C4 Amaranthus and the cassava C3-C4 crops

  • M. A. El-Sharkawy


Productivity of most improved major food crops showed stagnation in the past decades. As human population is projected to reach 9–10 billion by the end of the 21st century, agricultural productivity must be increased to ensure their demands. Photosynthetic capacity is the basic process underlying primary biological productivity in green plants and enhancing it might lead to increasing potential of the crop yields. Several approaches may improve the photosynthetic capacity, including integrated systems management, in order to close wide gaps between actual farmer’s and the optimum obtainable yield. Conventional and molecular genetic improvement to increase leaf net photosynthesis (P N) are viable approaches, which have been recently shown in few crops. Bioengineering the more efficient CC4 into C3 system is another ambitious approach that is currently being applied to the C3 rice crop. Two under-researched, yet old important crops native to the tropic Americas (i.e., the CC4 amaranths and the C3-CC4 intermediate cassava), have shown high potential P N, high productivity, high water use efficiency, and tolerance to heat and drought stresses. These physiological traits make them suitable for future agricultural systems, particularly in a globally warming climate. Work on crop canopy photosynthesis included that on flowering genes, which control formation and decline of the canopy photosynthetic activity, have contributed to the climate change research effort. The plant breeders need to select for higher P N to enhance the yield and crop tolerance to environmental stresses. The plant science instructors, and researchers, for various reasons, need to focus more on tropical species and to use the research, highlighted here, as an example of how to increase their yields.

Additional key words

agricultural sustainability breeding C3, C4, C3-C4 species canopy climate change crop modeling environmental stress enzyme food security genetic engineering grain leaf Kranz anatomy photorespiration photosynthetic pathway protein starch storage-root water yield 



absorbed photosynthetically active radiation


ambient CO2 concentration


intercellular CO2 concentration


carbonic anhydrase


stomatal conductance


glycine decarboxylase


infra-red gas analyser


leaf area/land surface area index


Michaelis constant


NAD-malic enzyme


NADP-malic enzyme


net photosynthetic rate




phosphoenolpyruvate carboxylase




protein efficiency ratio


photosynthetic nitrogen-use efficiency


pyruvate, phosphate dikinase


radiation-use efficiency


tricarboxylic acid


maximum carboxylation rate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Affholder F., Poeydebat C., Corbeels M. et al.: The yield gap of major food crops in family agriculture in the tropics: assessment and analysis through field surveys and modelling. — Field Crop. Res. 143: 106–118, 2013.CrossRefGoogle Scholar
  2. Aguilar L.P.: [Leaf ultrastructure and photosynthesis in different cassava (Manihot esculenta Crantz) cultivars].–BSc. Thesis. Universidad del Cauca, Popayan 1995. [In Spanish]Google Scholar
  3. Allem A.C.: The origin and taxonomy of cassava. — In: Hillocks R. J., Thresh J. M., Bellotti A. C. (ed.): Cassava: Biology, Production and Utilization. Pp. 1–16. CABI Publishing, New York 2002.CrossRefGoogle Scholar
  4. Amthor J.S.: From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. — New Phytol. 188: 939–959, 2010.PubMedCrossRefGoogle Scholar
  5. Angelov M.N., Sun J., Byrd G.T. et al.: Novel characteristics of cassava, Manhito esculenta Crantz, a reputed C3-C4 intermediate photosynthesis species. — Photsynth. Res. 38: 61–72, 1993.CrossRefGoogle Scholar
  6. Bhatt J.G., Rao M.R.K.: Heterosis in growth and photosynthetic rate in hybrids of cotton. — Euphytica 30: 129–133, 1981.CrossRefGoogle Scholar
  7. Baker J.M.: “It’s good for many things”: Wixárika (Huichol) ethnoecology of amaranth. — MSc. Thesis. University of Alberta, Edmonton 2006.Google Scholar
  8. Bauwe H.: Photosynthetic enzyme activities in C3 and C3-C4 intermediate species of Moricandia and in Panicum millioides. — Photosynthetica 18: 201–209, 1984.Google Scholar
  9. Bauwe H.: Photorespiration: the bridge to C4 photosynthesis. — In: Raghavendra A.S., Sage R.F. (ed.): C4 photosynthesis and related CO2 concentrating mechanisms. Pp. 81–108. Springer, Dordrecht 2011.Google Scholar
  10. Berry J.A.: There ought to be an equation for that. — Annu. Rev. Plant Biol. 63: 1–17, 2012.PubMedCrossRefGoogle Scholar
  11. Berry J.O., McCormac D.J., Long J.J. et al.: Photosynthetic gene expression in amaranth, an NAD-ME type C4 dicot. — Aust. J. Plant Physiol. 24: 423–428, 1997.CrossRefGoogle Scholar
  12. Björkman O., Gauhl E., Nobs M.A.: Comparative studies of Atriplex species with and without β-carboxylation photosynthesis. — Carnegie Inst. Washington Yearbook 68: 620–633, 1969.Google Scholar
  13. Björkman O., Nobs M., Pearcy R. et al.: Characteristics of hybrids between C3 and C4 species of Atriplex. — In: Hatch M.D., Osmond C.B., Slatyer R.O. (ed.): Photosynthesis and Photorespiration. Pp. 105–119. Wiley-Intersci. Publ., New York 1971.Google Scholar
  14. Boardman N.K.: Comparative photosynthesis of sun and shade plants. — Annu. Rev. Plant Physio. 28: 355–377, 1977.CrossRefGoogle Scholar
  15. Borrell A., Hammer G., van Oosterom E.: Stay-green: A consequence of the balance between supply and demand for nitrogen during grain filling? — Ann. Bot.-London 138: 91–95, 2001.CrossRefGoogle Scholar
  16. Bowes G., Ogren W.L., Hageman R.H.: Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. — Biochem. Biophys. Res. Comun. 45: 716–722, 1971.CrossRefGoogle Scholar
  17. Briggs L.J., Shantz H.L.: Relative water requirement of plants. — J. Agr. Res. 3: 1–63, 1914.Google Scholar
  18. Brownell P.F., Crossland C.J.: The requirement for sodium as a micronutrient by species having C4 dicarboxylic photo-synthetic pathway. — Plant Physiol. 49: 794–797, 1972.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Brown R.H.: A difference in the N use efficiency in C3 and C4 plants and its implications in adaptation and evolution. — Crop Sci. 18: 93–98, 1978.CrossRefGoogle Scholar
  20. Brown R.H., Byrd G.T., Bouton J.H., Bassett C.L: Photosynthetic characteristics of segregates from hybrids between Flaveria brownii (C4 like) and Flaveria linearis (C3-C4). — Plant Physiol. 101: 825–831, 1993.PubMedPubMedCentralGoogle Scholar
  21. Burnell J.N., Hatch M.D.: Low bundle sheath carbonic anhydrase is apparently essential for effective C4 pathway operation. — Plant Physiol. 86: 1252–1256, 1988.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Burnside C.A., Böhning R.H.: The effect of prolonged shading on the light saturation curves of apparent photosynthesis in sun plants. — Plant Physiol. 32: 61–63, 1957.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Busch F.A., Sage T.L., Cousins A.B., Sage R.F.: C3 plants enhance rate of photosynthesis by reassimilating photorespired and respired CO2. — Plant Cell Environ. 36: 200–212, 2013.PubMedCrossRefGoogle Scholar
  24. Calatayud P.A., Barón C.H., Velásquez J.A. et al.: Wild Manihot species do not possess C4 photosynthesis. — Ann. Bot. 89: 125–127, 2002.PubMedCrossRefGoogle Scholar
  25. Castrillo M., Aso P., Longart M., Vermehren A.: In situ immunofluorescent localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in mesophyll of C4 dicotyledonous plants. — Photosynthetica 33: 39–50, 1997.CrossRefGoogle Scholar
  26. Cheng S.H., Cao L.Y., Yang S.H., Zhai H.Q.: Forty years’ development of hybrid rice: China’s experience. — Rice Sci. 11: 225–230, 2004.Google Scholar
  27. Cheng S.H., Zhuang J.Y., Fan Y.Y. et al.: Progress in research and development on hybrid rice: A super-domesticate in China. — Ann. Bot.-London 100: 959–966, 2007.CrossRefGoogle Scholar
  28. Cock J.H., Franklin D., Sandoval G., Juri P.: The ideal cassava plant for maximum yield. — Crop Sci. 19: 271–279, 1979.CrossRefGoogle Scholar
  29. Cock J.H., Riaño N.M., El-Sharkawy M.A. et al.: C3-C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz). II. Initial products of 14CO2 fixation. — Photosynth. Res. 12: 237–241, 1987.PubMedCrossRefGoogle Scholar
  30. Cock J.H., El-Sharkawy M.A.: Physiological characteristics for cassava selection. — Exp. Agri. 24: 443–448, 1988.Google Scholar
  31. Connor D.J., Loomis R.S., Cassman K.G.: Crop Ecology: Productivity and Management in Agricultural Systems 2nd Ed. Pp. 562. Cambridge University Press, Cambridge 2011.CrossRefGoogle Scholar
  32. Connor J.K., Gartner R.J.W., Runge B.M., Amos R.N.: Amaranthus edulis: an ancient food source re-examined. — Aust. J. Exp. Agr. 20: 156–161, 1980.CrossRefGoogle Scholar
  33. Davis L.C.: Limiting factors in nitrogen fixation. — What’s New in Plant Physiology 11: 41–44, 1980.Google Scholar
  34. de Tafur S.M., El-Sharkawy M.A., Calle F.: Photosynthesis and yield performance of cassava in seasonally dry and semiarid environments. — Photosynthetica 33: 249–257, 1997CrossRefGoogle Scholar
  35. Döring F., Streubel M., Bräutigam A., Gowik U.: Most photorespiratory genes are preferentially expressed in the bundle sheath cells of the C4 grass Sorghum bicolor. — J. Exp. Bot. March 14, 2016. doi:  10.1093/jxb/erw041.Google Scholar
  36. Downton W.J.S.: Amaranthus edulis: a high lysine grain amaranth. — World Crop. 25: 20, 1973.Google Scholar
  37. Duvall M.R., Saar D.E., Grayburn W.S., Holbrook G.P.: Complex transitions between C3 and C4 photosynthesis during the evolution of Paniceae: a phylogenetic case study emphasizing the position of Steinchisma hians (Poaceae), a C3-C4 intermediate. — Int. J. Plant Sci. 164: 949–958, 2003.CrossRefGoogle Scholar
  38. Edwards G.E., Sheta E., Moore B. et al.: Photosynthetic characteristics of cassava (Manihot esculenta Crantz), a C3 species with chlorenchymatous bundle sheath cells. — Plant Cell Physiol. 31: 1199–1206, 1990.Google Scholar
  39. Ehleringer J.: Ecophysiology of Amaranthus palmeri, a Sonoran desert summer annual. — Oecologia 57: 1071–12, 1983.Google Scholar
  40. Elmore C.D., Paul R.N.: Composite list of C4 weeds. — Weed Sci. 31: 686–692, 1983.Google Scholar
  41. El-Sharkawy M.A: Factors limiting photosynthetic rates of different plant species. — PhD. Thesis. The University of Arizona, Tucson 1965.Google Scholar
  42. El-Sharkawy M.A.: Drought-tolerant cassava for Africa, Asia, and Latin America: breeding projects work to stabilize productivity without increasing pressure on limited natural resources. — BioScience 43: 441–451, 1993.CrossRefGoogle Scholar
  43. El-Sharkawy M.A.: Cassava biology and physiology. — Plant Mol. Biol. 53: 621–641, 2003.CrossRefGoogle Scholar
  44. El-Sharkawy M.A.: Cassava biology and physiology. — Plant Mol. Biol. 56: 481–501, 2004.PubMedCrossRefGoogle Scholar
  45. El-Sharkawy M.A.: How can calibrated research-based models be improved for use as a tool in identifying genes controlling crop tolerance to environmental stresses in the era of genomics — from an experimentalist’s perspective. — Photosynthetica 43: 161–176, 2005.CrossRefGoogle Scholar
  46. El-Sharkawy M.A.: International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. — Photosynthetica 44: 481–512, 2006.CrossRefGoogle Scholar
  47. El-Sharkawy M.A.: Pioneering research on C4 photosynthesis: Implications for crop water relations and productivity in comparison to C3 cropping systems. — J. Food Agric. Environ. 7: 468–484, 2009a.Google Scholar
  48. El-Sharkawy M.A.: Pioneering research on C4 leaf anatomical, physiological, and agronomic characteristics of tropical monocot and dicot plant species: Implications for crop water relations and productivity in comparison to C3 cropping systems. — Photosynthetica 47: 163–183, 2009b.CrossRefGoogle Scholar
  49. El-Sharkawy M.A.: Cassava: physiological mechanisms and plant traits underlying tolerance to prolonged drought and their application for breeding improved cultivars in the seasonally dry and semiarid tropics. — In: DaMatta F.M. (ed.): Ecophysiology of Tropical Tree Crops. Pp. 71–110. Nova Sci. Publ., New York 2010.Google Scholar
  50. El-Sharkawy M.A.: Stress-tolerant cassava: the role of integrative ecophysiology-breeding research in crop improvement. — Open J. Soil Sci. 2: 162–186, 2012.CrossRefGoogle Scholar
  51. El-Sharkawy M.A.: Global warming: causes and impacts on agroecosystems productivity and food security with emphasis on cassava comparative advantage in the tropics/subtropics. — Photosynthetica 52: 161–178, 2014.CrossRefGoogle Scholar
  52. El-Sharkawy M.A., Cock J.H.: Water use efficiency of cassava. I. Effects of air humidity and water stress on stomatal conductance and gas exchange. — Crop Sci. 24: 497–502, 1984.CrossRefGoogle Scholar
  53. El-Sharkawy M.A., Cock J.H.: C3-C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz).I. Gas exchange. — Phototsynth. Res. 12: 219–235, 1987a.CrossRefGoogle Scholar
  54. El-Sharkawy M.A., Cock J.H.: Response of cassava to water stress. — Plant Soil 100: 345–360, 1987b.CrossRefGoogle Scholar
  55. El-Sharkawy M.A., Cock J.H.: Photosynthesis of cassava (Manihot esculenta Crantz). — Exp. Agri. 26: 325–340, 1990.CrossRefGoogle Scholar
  56. El-Sharkawy M.A., de Tafur S.M.: Genotypic and within canopy variation in leaf carbon isotope discrimination and its relation to short-term leaf gas exchange characteristics in cassava grown under rain-fed conditions in the tropics. — Photosynthetica 45: 515–526, 2007.CrossRefGoogle Scholar
  57. El-Sharkawy M.A., de Tafur S.M.: Comparative photosynthesis, growth, productivity, and nutrient use efficiency among talland short-stemmed rain-fed cassava cultivars. — Photosynthetica 48: 173–188, 2010.CrossRefGoogle Scholar
  58. El-Sharkawy M.A., Hesketh J.D.: Effects of temperature and water deficit on leaf photosynthetic rates of different species. — Crop Sci. 4: 514–518, 1964.CrossRefGoogle Scholar
  59. El-Sharkawy M., Hesketh J.: Photosynthesis among species in relation to characteristics of leaf anatomy and CO2 diffusion resistances. — Crop Sci. 5: 517–521, 1965.CrossRefGoogle Scholar
  60. El-Sharkawy M.A., Hesketh J.D.: Citation Classic-Photosynthesis among species in relation to characteristics of leaf anatomy and CO2 diffusion resistances. — Curr. Cont. /Agr. Biol. Environ. 27: 14, 1986.Google Scholar
  61. El-Sharkawy M.A., Cock J.H., de Cadena G.: Influence of differences of leaf anatomy on net photosynthetic rates of some cultivars of cassava. — Photosynth. Res. 5: 235–242, 1984a.PubMedCrossRefGoogle Scholar
  62. El-Sharkawy M.A., Cock J.H., de Cadena G.: Stomatal characteristics among cassava cultivars and their relation to gas exchange. — Exp. Agri. 20: 67–76, 1984b.CrossRefGoogle Scholar
  63. El-Sharkawy M.A., Cock J.H., Held A.A.: Photosynthetic responses of cassava cultivars (Manihot esculenta Crantz) from different habitats to temperature. — Photosynth. Res. 5: 243–250, 1984c.PubMedCrossRefGoogle Scholar
  64. El-Sharkawy M.A., Cock J.H., Held A.A.: Water use efficiency of cassava. II: Differing sensitivity of stomata to air humidity in cassava and other warm climate species. — Crop Sci. 24: 503–507, 1984d.CrossRefGoogle Scholar
  65. El-Sharkawy M.A., Cock J.H., Hernandez A.D.P.: Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. — Photosynth. Res. 7: 137–149, 1985.PubMedCrossRefGoogle Scholar
  66. El-Sharkawy M.A., de Tafur S.M., Cadavid L.F.: Potential photosynthesis of cassava as affected by growth conditions. — Crop Sci. 32: 1336–1342, 1992a.CrossRefGoogle Scholar
  67. El-Sharkawy M.A., de Tafur S.M., Cadavid L.F.: Photosynthesis of cassava and its relation to crop productivity. — Photosynthetica 28: 431–438, 1993.Google Scholar
  68. El-Sharkawy M.A., de Tafur S.M., Lopez Y.: Cassava productivity, photosynthesis, ecophysiology, and response to environmental stresses in the tropics: a multidisciplinary approach to crop improvement and sustainable production. — In: Ospina B., Ceballos H. (ed.): Cassava in the Third Millennium: Modern Production, Processing, Use, and Marketing Systems. Pp. 29–88. CIAT, Cali 2012a.Google Scholar
  69. El-Sharkawy M.A., de Tafur S.M., Lopez Y.: Integrative ecophysiological research for breeding improved cassava cultivars in favorable and stressful environments in the tropical/subtropical bio-systems. — In: Gorawala P., Mandhatri S. (ed.): Agricultural Research Updates, Vol. 4. Pp. 1–76. Nova Sci. Publ., New York 2012b.Google Scholar
  70. El-Sharkawy M.A., Hernández A.D.P., Hershey C.: Yield stability of cassava during prolonged mid-season water stress. — Exp. Agr. 28: 165–174, 1992b.CrossRefGoogle Scholar
  71. El-Sharkawy M.A., Hesketh J., Muramoto H.: Leaf photosynthetic rates and other growth characteristics among 26 species of Gossypium. — Crop Sci. 5: 173–175, 1965.CrossRefGoogle Scholar
  72. El-Sharkawy M.A., Loomis R.S., Williams W.A.: Apparent reassimilation of respiratory carbon dioxide by different plant species. — Physiol. Plantarum 20: 171–186, 1967.CrossRefGoogle Scholar
  73. El-Sharkawy M.A., Loomis R.S., Williams W.A.: Photosynthetic and respiratory exchanges of carbon dioxide by leaves of grain amaranth. — J. Appl. Ecol. 5: 243–251, 1968.CrossRefGoogle Scholar
  74. El-Sharkawy M.A., Lopez Y., Bernal L.M.: Genotypic variations in activities of phosphoenolpyruvate carboxylase (PEPC) and correlations with leaf photosynthetic characteristics and crop productivity of cassava grown in lowland seasonally dry tropics. — Photosynthetica 46: 238–247, 2008.CrossRefGoogle Scholar
  75. El-Sharkawy M.A., Cock J.H., Lynam J.K. et al.: Relationships between biomass, root-yield and single-leaf photosynthesis in field-grown cassava. — Field Crop. Res. 25: 183–201, 1990.CrossRefGoogle Scholar
  76. Evans L.T.: Crop Evolution, Adaptation and Yield. Pp. 500. Cambridge University Press, Cambridge 1993.Google Scholar
  77. Everson R.G., Slack. C.R.: Distribution of carbonic anhydrase in relation to the C4 pathway of photosynthesis. — Phytochemistry 7: 581–584, 1968.CrossRefGoogle Scholar
  78. FAO: Adaptation to climate change in agriculture, forestry and fisheries: perspective, framework and priorities. Pp. 24. FAO, Rome 2007.Google Scholar
  79. Fedoroff N.V.: McClintock’s challenge in the 21st century. — P. Natl. Acad. Sci. USA 109: 20200–20203, 2012.CrossRefGoogle Scholar
  80. Fischer R.A., Byerlee D., Edmeades G.O.: Crop Yields and Global Food Security: will Yield Increase Continue to Feed the World?. Pp. 634. Austr. Centre Int. Agr. Res., Canberra 2014.Google Scholar
  81. Fischer R.A., Rees D., Sayre K.D et al.: Wheat yield progress is associated with higher stomatal conductance, higher photosynthetic rate and cooler canopies. — Crop Sci. 38: 1467–1475, 1998.CrossRefGoogle Scholar
  82. Fisher A.E., McDade L.A., Kiel C.A. et al: Evolutionary history of Blepharis (Acanthaceae) and the origin of C4 photosynthesis in section Acanthodium. — Int. J. Plant Sci. 176: 770–790, 2015.CrossRefGoogle Scholar
  83. George T.S., Hawes C., Newton A.C. et al.: Field phenotyping and long-term platforms to characterise how crop genotypes interact with soil processes and the environment.–Agronomy 4: 242–278, 2014.CrossRefGoogle Scholar
  84. Gibbons A.: New view of early Amazonia. — Science 248: 1488–1490, 1990.PubMedCrossRefGoogle Scholar
  85. Gilmanov T.G., Baker J.M., Bernachii C.J. et al.: Productivity and carbon dioxide exchange of leguminous crops: estimates from flux towers measurements. — Agron. J. 106: 545–559, 2014.CrossRefGoogle Scholar
  86. Gowik U., Westhoff P.: The path from C3 to C4 photosynthesis. — Plant Physiol. 155: 56–63, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Gready J.E., Dwyer S.A., Evans J.R. (ed.).: Applying Photosynthesis Research to Improvement of Food Crops. Proceedings of a Workshop Held at the Australian National University, Canberra, ACT, Australia, 2–4 September 2009. Pp. 145. ACIAR Proceedings 140. Austr. Centre Int. Agr. Res., Canberra 2013.Google Scholar
  88. Hand D.W., Warren Wilson J., Acock B.: Effects of light and CO2 on net photosynthetic rates of stands of aubergine and Amaranthus. — Ann. Bot.-London 71: 209–216, 1993.CrossRefGoogle Scholar
  89. Hatch M.D., Burnell J.M.: Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis. — Plant Physiol. 93: 825–828, 1990.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Hatch M.D., Slack C.R.: Photosynthetic CO2-fixation pathways. — Annu. Rev. Plant Physio. 21: 141–162, 1970.CrossRefGoogle Scholar
  91. Hatch M.D., Slack C.R., Johnson H.S.: Further studies on a new pathway of photosynthetic CO2 fixation in sugar cane and its occurrence in other plant species. — Biochem. J. 102: 417–422, 1967.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Hatfield J.L., Walthall C.L.: Meeting global food needs: realizing the potential via genetics x environment x management interactions. — Agron. J. 107: 1215–1226, 2015.CrossRefGoogle Scholar
  93. Hauptli H., Jain S.K.: Biosystematics and agronomic potential of some weedy and cultivated amaranths. — Theor. Appl. Genet. 52: 177–185, 1978.PubMedCrossRefGoogle Scholar
  94. Hershey C.H., Jennings D.L.: Progress in breeding cassava for adaptation to stress. — Plant Breed. Abstr. 62: 823–831, 1992.Google Scholar
  95. Hesketh J., Muramoto H., El-Sharkawy M.: Carbonic Anhydrase and Photosynthesis in Leaves among Species. Rep. no. 2 on Photosynthesis. Pp. 15. Dept. Plant Breeding, Univ. Arizona, Tucson 1965.Google Scholar
  96. Hong J., Jiang D.-A, Weng X.-Y et al.: Leaf anatomy,chloroplast ultrastructure, and cellular localization of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and RuBPCO activase in Amaranthus tricolor L. — Photosynthetica 43: 519–528, 2005.CrossRefGoogle Scholar
  97. Holaday A.S., Chollet R.: Photosynthetic/photorespiratory characteristics of C3-C4 intermediate species. — Photosynth. Res. 5: 307–323, 1984.PubMedCrossRefGoogle Scholar
  98. Holaday A.S., Brown R.H., Bartlett J.M. et al.: Enzymic and photosynthetic characteristics of reciprocal F1 hybrids of Flaveria pringlei (C3) and Flaveria brownii (C4-like species). — Plant Physiol. 87: 484–490, 1988.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Houghton R.A.: Carbon. — In: Turner B.L., Clark W.C., Kates R.W. et al. (ed.).: The Earth as Transformed by Human Action. Pp. 393–408. Cambridge University Press, Cambridge 1990.Google Scholar
  100. Huang X., Yang S., Gong J. et al.: Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. — Nat. Commun. 6: 6258, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Hylton C.M., Rawsthorne S., Smith A.M. et al.: Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3-C4 intermediate species. — Planta. 175: 452–459, 1988.PubMedCrossRefGoogle Scholar
  102. Igamberdiev A.U., Roussel M.R.: Feedforward non-Michaelis-Menten mechanism for CO2 uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation. — Biosystems 107: 158–166, 2012.PubMedCrossRefGoogle Scholar
  103. Igamberdiev A.U.: Control of Rubisco function via homeostatic equilibration of CO2 supply. — Front. Plant Sci. 6: 106, 2015.PubMedPubMedCentralGoogle Scholar
  104. Jackson W.A., Volk R.J.: Oxygen uptake by illuminated maize leaves. — Nature 222: 269–271, 1969.PubMedCrossRefGoogle Scholar
  105. Jackson W.A., Volk R.J.: Photorespiration. — Annu. Rev. Plant Physio. 21: 385–432, 1970.CrossRefGoogle Scholar
  106. Jarvis A., Ramirez-Villegas J., Herrera Campo J.B., Navarro-Racines C.: Is cassava the answer to African climate change adaptation? — Tropical Plant Biol. 5: 9–29, 2012.CrossRefGoogle Scholar
  107. Johnson B.L., Henderson T.L.: Water use patterns of grain amaranth in the northern great plains. — Agron. J. 94: 1437–1443, 2002.CrossRefGoogle Scholar
  108. Johnston M., Grof C.P.L., Brownell P.F.: Responses to ambient CO2 concentrations by sodium-deficient C4 plants. — Aust. J. Plant Physiol. 11: 137–141, 1984.CrossRefGoogle Scholar
  109. Kelly J.G., Latzko E.: Thirty Years of Photosynthesis. 1974 — 2004. Pp. 414. Springer, Berlin-Heidelberg-New York 2006.Google Scholar
  110. Keerberg O., Pämik T., Ivanova H. et al.: C2 photosynthesis generates about 3-fold elevated leaf CO2 levels in the C3–C4 intermediate species Flaveria pubescens. — J. Exp. Bot. 65: 3649–3656, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Kering M.K.: Manganese nutrition and photosynthesis in NAD-malic enzyme C4 plants. — Ph.D. Thesis. The University of Missouri, Columbia 2008.Google Scholar
  112. Kiirats O., Lea P.J., Franceschi V.R., Edwards G.E.: Bundle sheath diffusive resistance to CO2 and effectiveness of C4 photosynthesis and refixation of photorespired CO2 in C4 cycle mutant and wild-type Amaranthus edulis. — Plant Physiol. 130: 964–976, 2002.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kiniry J.R., Jones C.A., O’Toole J.C. et al.: Radiation-use efficiency in biomass accumulation prior to grain-filling for five grain-crop species. — Field Crop. Res. 20: 51–64, 1989.CrossRefGoogle Scholar
  114. Kirkham M.B.: Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations. Pp. 399. CRC Press, Boca Raton 2011.CrossRefGoogle Scholar
  115. Kennedy R.A., Laetsch W.M.: Plant species intermediate for C3, C4 photosynthesis. — Science 184: 1087–1089, 1974.PubMedCrossRefGoogle Scholar
  116. Kozaki A., Takeba G.: Photorespiration protects C3 plants from photooxidation. — Nature 384: 557–560, 1996.CrossRefGoogle Scholar
  117. Laetsch W.M.: The C4 syndrome: a structural analysis. — Annu. Rev. Plant Physio. 25: 27–52, 1974.CrossRefGoogle Scholar
  118. Langdale J.A., Nelson T.: Spatial regulation of photosynthetic development. — Trends Genet. 7: 191–196, 1991.PubMedCrossRefGoogle Scholar
  119. Lehmann J.W: Hybridization and growth studies in the grain amaranths (Amaranthus hybridus L.). — Ph.D. Thesis. Iowa State University, Ames 1989.Google Scholar
  120. Lenis J.I., Calle F., Jaramillo G. et al.: Leaf retention and cassava productivity. — Field Crop. Res. 95: 126–134, 2006.CrossRefGoogle Scholar
  121. Lester J.N., Goldsworthy A.: The occurrence of high CO2-compensation points in Amaranthus species. — J. Exp. Bot. 24: 1031–1034, 1973.CrossRefGoogle Scholar
  122. Lin Z.F., Ehleringer J.: Photosynthetic characteristics of Amaranthus tricolor, a C4 tropical leafy vegetable. — Photosynth. Res. 4: 171–178, 1983.CrossRefGoogle Scholar
  123. Lindquist J.L., Arkebauer T.J., Walters D.T. et al.: Maize radiation use efficiency under optimal growth conditions. — Agron. J. 97: 72–78, 2005.CrossRefGoogle Scholar
  124. Liu Y., Wu L., Baddeley J.A. Watson C.A.: Models of biological nitrogen fixation of legumes. A review. — Agron. Sustain. Dev. 31: 155–172, 2011.CrossRefGoogle Scholar
  125. Lobell D.B., Cassman K.G., Field C.B.: Crop Yield Gaps: Their Importance, Magnitudes, and Causes. — Annu. Rev. Env. Resour. 34: 179–204, 2009CrossRefGoogle Scholar
  126. Loomis R.S., Amthor J.S.: Yield potential, plant assimilatory capacity, and metabolic efficiencies. — Crop Sci. 39: 1584–1596, 1999.CrossRefGoogle Scholar
  127. Long S.P., Ainsworth E.A., Leakey A.D.B. et al.: Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentration. — Science 312: 1918–1921, 2006.PubMedCrossRefGoogle Scholar
  128. Lundgren M.R., Osborne C.P., Christin P.-A.: Deconstructing Kranz anatomy to understand C4 evolution. — J. Exp. Bot. 65: 3357–3369, 2014.PubMedCrossRefGoogle Scholar
  129. Lutz W., Butz W.P., Samir K.C. (ed.): World Population and Human Capital in the Twenty-First Century. Pp. 1072. Oxford Univ. Press, Oxford 2014.CrossRefGoogle Scholar
  130. Lynch J.P.: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture. — Plant Cell Environ. 38: 1775–1784, 2015.PubMedCrossRefGoogle Scholar
  131. Magnin N.C., Cooley B.A., Reiskind J.B., Bowes G.: Regulation and localization of key enzymes during the induction of Kranzless, C4–type photosynthesis in Hydrilla verticillata. — Plant Physiol. 115: 1681–1689, 1997.PubMedPubMedCentralGoogle Scholar
  132. Milthorpe F.L. (ed.).: The Growth of Leaves. Pp. 223. Butterworth’s Sci. Publ., London. 1956.Google Scholar
  133. Monson R.K.: On the evolutionary pathways resulting in C4 photosynthesis and crassulacean acid metabolism (CAM). — Adv. Ecol. Res. 19: 57–110, 1989.CrossRefGoogle Scholar
  134. Monson R.K., Rawsthorne S.: Carbon dioxide assimilation in C3–C4 intermediate plants. — In: Leegood R.C., Sharkey T.D., von Caemmerer S.(ed.): Photosynthesis: Physiology and Metabolism. Pp. 533–550. Kluwer Academic Press, Dordrecht 2000.CrossRefGoogle Scholar
  135. Monson R.K., Edwards G.E., Ku M.S.B.: C3-C4 intermediate photosynthesis in plants. — BioScience 34: 563–574, 1984.CrossRefGoogle Scholar
  136. Muramoto H., Hesketh J., El-Sharkawy M.A.: Relationships among rate of leaf area development, photosynthetic rate, and rate of dry matter production among American cultivated cottons and other species. — Crop Sci. 5: 163–166, 1965.CrossRefGoogle Scholar
  137. Nasyrov Y.S.: Genetic control of photosynthesis and improving of crop productivity. — Annu. Rev. Plant Physio. 29: 215–237, 1978.CrossRefGoogle Scholar
  138. Nasyrov Y.S.: Genetic modification of the CO2 carboxylation reactions as a factor improving efficiency of photosynthesis. — Indian J. Plant Physiol. 24: 26–36, 1981.Google Scholar
  139. Nelson T., Langdale J.A.: Pattern of leaf development in C4 plants. — Plant Cell 1: 3–13, 1989.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Nelson T., Langdale J.A.: Developmental genetics of C4 photosynthesis. — Annu. Rev. Plant Phys. 43: 25–47, 1992.CrossRefGoogle Scholar
  141. NRC (National Research Council).: Amaranthus: Modern Prospects for an Ancient Crop. Pp. 80. Nat. Acad. Press, Wahington, D.C. 1984.Google Scholar
  142. NRC (National Research Council).: Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation. Pp. 415. Nat. Acad. Press, Washington, D.C. 1989.Google Scholar
  143. Oakley J.C., Sultmanis S., Stinson C.R. et al.: Comparative studies of C3 and C4 Atriplex hybrids in the genomics era: physiological assessments. — J. Exp. Bot. 65: 3637–3647, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Oaks A.: Efficiency of nitrogen utilization in C3 and C4 cereals. — Plant Physiol. 106: 407–414, 1994.PubMedPubMedCentralGoogle Scholar
  145. Ogren W.L.: Photorespiration: pathways, regulation, and modification. — Annu. Rev. Plant Physio. 35: 415–442, 1984.CrossRefGoogle Scholar
  146. Parry M.A.J., Reynolds M.P., Salvucci M.E. et al.: Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. — J. Exp. Bot. 62: 453–467, 2011.PubMedCrossRefGoogle Scholar
  147. Pearcy R.W., Ehleringer J.: Comparative ecophysiology of C3 and C4 plants. — Plant Cell Environ. 7: 1–13, 1984.CrossRefGoogle Scholar
  148. Pellet D., El-Sharkawy M.A.: Cassava response to phosphorus fertilization. I. Yield, biomass and gas exchange. — Field Crop. Res. 35: 1–11, 1993.CrossRefGoogle Scholar
  149. Pellet D., El-Sharkawy M. A.: Sink Source relations in cassava: effects of reciprocal grafting on yield and leaf photosynthesis. — Exp. Agri. 30: 359–367, 1994.CrossRefGoogle Scholar
  150. Peng S., Huang J., Sheehy J.E. et al.: Rice yields decline with higher night temperature from global warming. — P. Natl. Acad. Sci. USA 101: 9971–9975, 2004.CrossRefGoogle Scholar
  151. Penning de Vries F.W.T., Jansen D.M., ten Berge H.FM., Bakema A.: Simulation of Ecophysiological Processes of Growth in Several Annual Crops. Pp. 271. PUDOC, Wangeningen 1989.Google Scholar
  152. Phillips D.A.: Efficiency of symbiotic nitrogen fixation in legumes. — Annu. Rev. Plant Physio. 31: 29–49, 1980.CrossRefGoogle Scholar
  153. Poorter H., Niinemets Ü., Poorter L. et al.: Causes and consequences of variation in leaf mass per area (LMA): a metaanalysis. — New Phytol. 182: 565–588, 2009.PubMedCrossRefGoogle Scholar
  154. Porter J.R., Xie L., Challinor A.J. et al.: IPCC: Food Security and Food Production Systems (WG II AR5), Chap. 7. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Pp. 485–533. Cambridge and New York 2014.Google Scholar
  155. Porto M.C.M.: Physiological mechanisms of drought tolerance in cassava (Manihot esculenta Crantz). — PhD. Thesis. The University of Arizona, Tucson 1983.Google Scholar
  156. Rabbi I., Hamblin M., Gedil M. et al.: Genetic mapping using genotyping-by-sequencing in the clonally propagated cassava. — Crop Sci. 54: 1–13, 2014.CrossRefGoogle Scholar
  157. Rawsthorne S.: C3-C4 intermediate photosynthesis: linking physiology to gene expression. — Plant J. 2: 267–274, 1992.CrossRefGoogle Scholar
  158. Ray D.K., Mueller N.D., West P.C., Foley J.A.: Yield trends are insufficient to double global food production by 2050.— PloS One 8: e66428, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Reiskind J.B., Madsen T.V., Van Ginkel L.C., Bowes G.: Evidence that inducible C4-type photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla, a submersed monocot. — Plant Cell Environ. 20: 211–220, 1997.CrossRefGoogle Scholar
  160. Renvoize B.S.: The area of origin of Manihot esculenta. — Econ. Bot. 26: 352–360, 1972.CrossRefGoogle Scholar
  161. Reynolds M., Foulkes J., Furbank R. et al.: Achieving yield gains in wheat. — Plant Cell Environ. 35: 1799–1823, 2012.PubMedCrossRefGoogle Scholar
  162. Riaño N.M., Cock J.H., Lopez F.Y., El-Sharkawy M A.: [Kranz anatomy, structure, and distribution of chloroplasts in cassava (Manihot esculenta Crantz) leaves]. — Revista Comalfi 14: 5–12, 1987a. [In Spanish]Google Scholar
  163. Riaño M.A., Cock J.H., López Y. et al.: [Photosynthetic characteristics of cassava (Manihot esculenta Crantz): initial products of 14CO2 fixation]. — Revista Comalfi 14: 13–17, 1987b. [In Spanish]Google Scholar
  164. Rosenthal D., Ort D.R.: Examining cassava’s potential to enhance food security under climate change. — Trop. Plant Biol. 5: 30–38, 2012.CrossRefGoogle Scholar
  165. Rylott E.L., Metzlaff K., Rawsthorne S.: Developmental and environmental effects on the expression of the C3-C4 intermediate phenotypes in Moricandia arvensis. — Plant Physiol. 118: 1277–1284,1998.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Sage R.F.: The evolution of C4 photosynthesis. — New Phytol. 161: 341–370, 2004.CrossRefGoogle Scholar
  167. Sage R.F.: Photorespiratory compensation: a driver for biological diversity. — Plant Biol. 15: 624–638, 2013.PubMedCrossRefGoogle Scholar
  168. Sage R.F., Pearcy R.W.: The nitrogen use efficiency of C3 and C4 plants I. Leaf nitrogen, growth, and biomass partitioning in Chenopodium album (L.) and Amaranthus retroflexus (L.). — Plant Physiol. 84: 954–958, 1987.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Sage R.F., Seemann J.R.: Regulation of ribulose- 1,5-bisphosphate carboxylase/oxygenase activity in response to reduced light intensity in C4 plants. — Plant Physiol. 102: 21–28, 1993.PubMedPubMedCentralCrossRefGoogle Scholar
  170. Sage R.F., Christin P.-A., Edwards E.K.: The C4 plant lineages of planet Earth. — J. Exp. Bot. 62: 3155–3169, 2011a.PubMedCrossRefGoogle Scholar
  171. Sage R.F., Sage T.L., Kocacinar F.: Photorespiration and the Evolution of C4 photosynthesis. — Annu. Rev. Plant Biol. 63: 19–47, 2012.PubMedCrossRefGoogle Scholar
  172. Sage R.F., Sage T.L., Pearcy R.W., Borsch T.: The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. — Am. J. Bot. 94: 1992–2003, 2007.PubMedCrossRefGoogle Scholar
  173. Sage T.L., Busch F.A., Johnson D.C. et al: Initial events during the evolution of C4 photosynthesis in C3 species of Flaveria. — Plant Physiol. 163: 1266–1276, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Sage T.L., Sage R.F., Vogan P.J. et al.: The occurrence of C2 photosynthesis in Euphorbia subgenus Chamaesyce (Euphorbiaceae). — J. Exp. Bot. 62: 3183–3195, 2011bPubMedCrossRefGoogle Scholar
  175. Saithong T., Rongsirikul O., Kalapanulak S. et al.: Starch biosynthesis in cassava: a genome-based pathway reconstruction and its exploitation in data integration. — BMC Syst. Biol. 7: 75, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Sasson A.: Feeding Tomorrow’s World. Pp. 805. UNISCO/CTA, Paris 1990.Google Scholar
  177. Sauer J.D.: The grain Amaranths: A Survey of their History and Classification. — Ann. Mo. Bot. Gard. 37: 561–632, 1950.CrossRefGoogle Scholar
  178. Sauer J.D: The Grain Amaranths and their Relatives: A Revised Taxonomic and Geographic Survey. — Ann. Mo. Bot. Gard. 54: 103–137, 1967.CrossRefGoogle Scholar
  179. Sawada S., Sakamoto T., Sato M. et al.: Photosynthesis with single-rooted Amaranthus leaves. II. Regulation of ribulose-1,5-bisphosphate carboxylase, phosphoenolpyruvate carboxylase, NAD-malic enzyme and NAD-malate dehydrogenase and coordination between PCR and C4 photosynthetic metabolism in response to changes in the source-sink balance. — Plant Cell Physiol. 43: 1293–1301, 2002.PubMedCrossRefGoogle Scholar
  180. Schonbeck M.: Weed Profile: Pigweeds (Amaranthus spp.). — eXtension, March 10, 2014. Google Scholar
  181. Shantz H.L., Piemeisel L.N.: The water requirements of plants at Akron, CO. — J. Agr. Res. 34: 1093–1190, 1927.Google Scholar
  182. Sheehy J.E., Mitchell P.L., Hardy B. (ed.): Redesigning rice Photosynthesis to increase Yield. Proceedings of the Workshop on The Quest to Reduce Hunger: Redesigning Rice Photosynthesis, 30 Nov.-3 Dec. 1999. Los Baños, Philippines. Makati City (Philippines). Pp. 293. Elsevier Sci., Amsterdam 2000.Google Scholar
  183. Sheehy J.E., Mitchel P.L., Hardy B. (ed.): Charting New Pathways to C4 Rice. Pp 422. Int. Rice Res. Inst. Los Baños 2007.Google Scholar
  184. Sheen J.Y.: C4 gene expression. — Annu. Rev. Plant Phys. 50: 187–217, 1999.CrossRefGoogle Scholar
  185. Sinclair T.R., Horie T.: Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review. — Crop Sci. 29: 90–98, 1989.CrossRefGoogle Scholar
  186. Sinclair T.R., Muchow R.C.: Radiation use efficiency. — Adv. Agron. 65: 215–265, 1999.CrossRefGoogle Scholar
  187. Stoy V.: Interrelationships Among Photosynthesis, Respiration, and Movement of Carbon in Developing Crops. Pp. 24. Agr. & Hortic. Dep. Univ. Nebrasca, Lincoln 1969.Google Scholar
  188. Tanz S.K., Tetu S.G., Vella N.G.F., Ludwig M.: Loss of the transit peptide and an increase in gene expression of an ancestral chloroplastic carbonic anhydrase were instrumental in the evolution of the cytosolic C4 carbonic anhydrase in Flaveria. — Plant Physiol. 150: 1515–1529, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Tazoe Y., Noguchi K.O., Terashima I.: Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant, Amaranthus cruentus. — Plant Cell Environ. 29: 691–700, 2006.PubMedCrossRefGoogle Scholar
  190. Tittonell P., Giller K.E.: When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. — Field Crop. Res. 143: 76–90, 2013.CrossRefGoogle Scholar
  191. Tolbert N.E.: Microbodies-peroxisomes and glyoxysomes. — Annu. Rev. Plant Physio. 22: 45–74, 1971.CrossRefGoogle Scholar
  192. Tolbert N.E., Oeser A., Yamazaki R.K. et al.: A survey of plants for peroxisomes. — Plant Physiol. 44: 135–147, 1969.PubMedPubMedCentralCrossRefGoogle Scholar
  193. Triolo L., Bagnara D., Anselmi L., Bassanelli C.: Carbonic anhydrase activity and localization in some plant species. — Physiol. Plantarum 31: 86–89, 1974.CrossRefGoogle Scholar
  194. Tubiello F.N., Soussana J-F., Howden S.M.: Crop and pasture response to climate Change. — P. Natl. Acad. Sci. USA 104: 19686–19690. 2007.CrossRefGoogle Scholar
  195. Tucker J.B.: Amaranth: the once and future crop. — BioScience 36: 9–13, 1986.CrossRefGoogle Scholar
  196. Ueno O.: Immunocytochemical localization of enzymes involved in the C3 and C4 pathways in the photosynthetic cells of an amphibious sedge, Eleocharis vivipara. — Planta 199: 394–403, 1996.Google Scholar
  197. Ueno O.: Environmental regulation of C3 and C4 differentiation in the amphibious sedge, Eleocharis vivipara. — Plant Physiol. 127: 1524–1532, 2001.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Ueno O., Agarie S.: The intercellular distribution of glycine decarboxylase in leaves of cassava in relation to the photosynthetic mode and leaf anatomy. — Jap. J. Crop Sci. 66: 268–278, 1997.CrossRefGoogle Scholar
  199. Ugent D., Pozorski S., Pozorski T.: Archaeological manioc (Manihot) from coastal Peru. — Econ. Bot. 40: 78–102, 1986.CrossRefGoogle Scholar
  200. van Ittersum M.K., Cassman K.G., Grassini P. et al.: Yield gap analysis with local to global relevance — A review. — Field Crop. Res. 143: 4–17, 2013.CrossRefGoogle Scholar
  201. Vance C.P., Heichel G.H.: Carbon in N2 fixation: limitation or exquisite adaptation. — Annu. Rev. Plant Phys. 42: 373–390, 1991.CrossRefGoogle Scholar
  202. Veltkamp H.J.: Physiological causes of yield variation in cassava (Manihot esculenta Crantz). — PhD. Thesis, Wageningen Agricultural University, Wageningen 1986.Google Scholar
  203. Volk R.J., Jackson W.A.: Photorespiratory phenomena in maize. — Plant Physiol. 49: 218–223, 1972.PubMedPubMedCentralCrossRefGoogle Scholar
  204. von Caemmerer S., Furbank R.T. (ed.): C4 photosynthesis: 30 (or 40) years on. — Aust. J. Plant Physiol. 24: 409–555, 1997.CrossRefGoogle Scholar
  205. Voznesenskaya E.V., Franceschi V.R., Kiirats O. et al.: Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). — Plant J. 31: 649–662, 2002.PubMedCrossRefGoogle Scholar
  206. Voznesenskaya E.V., Franceschi V.R., Kiirats O. et al.: Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. — Nature 414: 543–546, 2001.PubMedCrossRefGoogle Scholar
  207. Voznesenskaya E.V., Koteyeva1 N.K., Edwards G.E., Ocampo G.: Revealing diversity in structural and biochemical forms of C4 photosynthesis and a C3–C4 intermediate in genus Portulaca L. (Portulacaceae). — J. Exp. Bot. 61: 3647–3662, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Wang J.L., Klessig D.F., Berry J.O.: Regulation of C4 gene expression in developing Amaranth leaves. — Plant Cell 4: 173–184, 1992.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Webster T.M.: Weed survey — southern states. Vegetable, fruit and nut crops subsection. — Proc. South. Weed Sci. Soc. 59: 260–277, 2006.Google Scholar
  210. Westhoff P., Gowik U.: Evolution of C4 phosphoenolpyruvate carboxylase-genes and proteins: a case study with the genus Flaveria. — Ann. Bot.-London 93: 13–23, 2004.CrossRefGoogle Scholar
  211. Whitehead W.F., Carter J., Singh B.P.: Effect of planting date on vegetable amaranth leaf yield, plant height, and gas exchange. — HortScience 37: 773–777, 2002.Google Scholar
  212. Wu X-Y., Gu W., Wu G.-Y.: Rubisco from Amaranthus hypochondriacus. — In: Baltscheffsky M. (ed.): Current Research in Photosynthesis, vol. III. Pp. 339–342. Kluwer Academic Publishers, Dordrecht 1990.Google Scholar
  213. Yin X., Struik P.C.: Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology. — J. Exp. Bot. 66: 6535–6549, 2015PubMedCrossRefGoogle Scholar
  214. Zahran H.H.: Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. — Microbiol. Mol. Biol. Rev. 63: 968–989,1999.PubMedPubMedCentralGoogle Scholar
  215. Zelitch I.: The close relationship between net photosynthesis and crop yield. — BioScience 32: 796–802, 1982.CrossRefGoogle Scholar
  216. Zhu X.-G., Long S.P., Ort D.R.: Improving photosynthetic efficiency for greater yield. — Annu. Rev. Plant Biol. 61: 235–261, 2010.PubMedCrossRefGoogle Scholar
  217. Ziska L.H., Dukes J.F. (ed.): Invasive Species and Global Climate Change. Pp 368. CABI, Wallingford 2014.Google Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  1. 1.Centro Internacional de Agricultura Tropical (CIAT)CaliColombia
  2. 2.A. A. 26360Cali,ValleColombia

Personalised recommendations