Skip to main content
Log in

Significance of mesophyll conductance for photosynthetic capacity and water-use efficiency in response to alkaline stress in Populus cathayana seedlings

  • Published:
Photosynthetica

Abstract

Cuttings of Populus cathayana were exposed to three different alkaline regimes (0, 75, and 150 mM Na2CO3) in a semicontrolled environment. The net photosynthesis rate (P N), mesophyll conductance (g m), the relative limitations posed by stomatal conductance (L s) and by mesophyll conductance (L m), photosynthetic nitrogen-use efficiency (PNUE), carbon isotope composition (δ13C), as well as specific leaf area (SLA) were measured. P N decreased due to alkaline stress by an average of 25% and g m decreased by an average of 57%. Alkaline stress caused an increase of L m but not L s, with average L s of 26%, and L m average of 38% under stress conditions. Our results suggested reduced assimilation rate under alkaline stress through decreased mesophyll conductance in P. cathayana. Moreover, alkaline stress increased significantly δ13C and it drew down CO2 concentration from the substomatal cavities to the sites of carboxylation (C i-C c), but decreased PNUE. Furthermore, a relationship was found between PNUE and C i-C c. Meanwhile, no correlation was found between δ13C and C i/C a, but a strong correlation was proved between δ13C and C c/C a, indicating that mesophyll conductance was also influencing the 13C/12C ratio of leaf under alkaline stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C a :

concentration of atmospheric CO2

C c :

CO2 concentration in chloroplasts

C i :

intercellular CO2 concentration

C c/C a :

chloroplastic to ambient CO2 concentration

C i/C a :

substomatal to ambient CO2 concentration

C a-C i :

drawing down CO2 concentration from ambient CO2 concentration to substomatal CO2 concentrations

C i-C c :

drawing down CO2 concentration from the substomatal cavities to the sites of carboxylation

g m :

mesophyll conductance

g s :

stomatal conductance

J max-Cc :

maximal rate of electron transport driving regeneration of RuBP determined on the basis of C c

J max-C i :

maximal rate of electron transport driving regeneration of RuBP determined on the basis of C i

K c :

Michaelis-Menten constants for RuBP carboxylation

K o :

Michaelis-Menten constants for RuBP oxygenation

LED:

light emitting diode

L m :

relative limitations posed by mesophyll conductance

L s :

relative limitations posed by stomatal conductance

N a :

leaf nitrogen content on area basis in g m−2

O :

oxygen concentration

P N :

net photosynthesis rate

PNUE:

photosynthetic nitrogen-use efficiency

PPFD:

photosynthetic photon flux density

R d :

mitochondrial respiration in the light

RSD:

relative standard deviations

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

RuBP:

ribulose-1,5-bisphosphate

SLA:

specific leaf area

V cmax-Cc :

maximum rate of carboxylation determined on the basis of C c

V cmax-Ci :

maximum rate of carboxylation determined on the basis of C i

WUE:

water-use efficiency

WUEi:

intrinsic water-use efficiency (P N/g s)

Γ*:

CO2 compensation point in the absence of mitochondrial respiration in the light

δ13C:

carbon isotope composition

References

  • Barbour, M.M., Warren, C.R., Farquhar, G.D. et al.: Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination. — Plant Cell Environ. 33: 1176–1185, 2010.

    PubMed  Google Scholar 

  • Bickford, C.P., Hanson, D.T., Mc Dowell, N.G.: Influence of diurnal variation in mesophyll conductance on modelled 13C discrimination: results from a field study. — J. Exp. Bot. 61: 3223–3233, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F., Chen, L., Zhao, H. et al.: Sex-specific responses and tolerances of Populus cathayana to salinity. — Physiol. Plant. 140: 163–173, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Duan, B., Li, Y., Zhang, X., Korpelainen, H., Li, C.: Water deficit affects mesophyll limitation of leaves more strongly in sun than in shade in two contrasting Picea asperata populations. — Tree Physiol. 29: 1551–1561, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Epron, D., Goddard, D., Cornic, G., Gentry, B.: Limitation of net CO2 assimilation rate by internal resistance to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). — Plant Cell Environ. 18: 43–51, 1995.

    Article  Google Scholar 

  • Ethier, G.H., Livingston, N.J.: On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. — Plant Cell Environ. 27: 137–153, 2004.

    Article  CAS  Google Scholar 

  • Ethier, G.H., Livingston, N.J., Harrison, D.L. et al.: Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves. — Plant Cell Environ. 29: 2168–2184, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Farquhar, G.D., Ehleringer, J.R., Hubick, K.T.: Carbon isotope discrimination and photosynthesis. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537, 1989.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis. — Ann. Rev. Plant Physiol. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., von Caemmerer, S., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. — Planta 149: 78–90, 1980.

    Article  CAS  Google Scholar 

  • Flexas, J., Ortuño, M.F., Ribas-Carbó, M. et al.: Mesophyll conductance to CO2 in Arabidopsis thaliana. — New Phytol. 175: 501–511, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Flexas, J., Ribas-Carbó, M., Díaz-Espejo, A. et al.: Mesophyll conductance to CO2: current knowledge and future prospects. — Plant Cell Environ. 31: 602–621, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Galmés, J., Medrano, H., Flexas, F.: Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. — New Phytol. 175: 81–93, 2007

    Article  PubMed  Google Scholar 

  • Hanba, Y.T., Kogami, H., Terashima I.: The effect of internal CO2 conductance on leaf carbon isotope ratio. — Isot. Environ. Health Stud. 39: 5–13, 2003.

    Article  CAS  Google Scholar 

  • Helrich, K. (ed.): AOAC Official methods of Analysis. Vol. 1. 15th Ed. — Assoc. Official Anal. Chemists, Arlington 1990.

    Google Scholar 

  • Laisk, A.K.: Kinetics of Photosynthesis and Photorespiration in C3-Plants. — Nauka, Moscow 1977.

    Google Scholar 

  • Li, C., Liu, S., Berninger, F.: Picea seedlings show apparent acclimation to drought with increasing altitude in the eastern Himalaya. — Trees 18: 277–283, 2004.

    Article  Google Scholar 

  • Loreto, F., Harley, P.C., Di Marco, G., Sharkey, T.D.: Estimation of mesophyll conductance to CO2 flux by three different methods. — Plant Physiol. 98: 1437–1443, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Munns, R., Tester, M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Piel, C., Frank, E., Roux, L.X., Genty, B.: Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut. — J. Exp. Bot. 53: 2423–2430, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Pons, T.L., Flexas, J., von Caemmerer, S. et al.: Estimating mesophyll conductance to CO2: methodology, potential errors and recommendations. — J. Exp. Bot. 60: 2217–2234, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Soolanayakanahally, R.Y., Guy, R.D., Silim, S.N. et al.: Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.). — Plant Cell Environ. 32: 1821–1832, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Tcherkez, G.: How large is the carbon isotope fractionation of the photorespiratory enzyme glycine decarboxylase? — Funct. Plant Biol. 33: 911–920, 2006.

    Article  CAS  Google Scholar 

  • von Caemmerer, S., Evans, J.R.: Determination of the average partial pressure of CO2 in chloroplasts from leaves of several C3 plants. — Australian J. Plant Physiol. 18: 287–305, 1991.

    Article  Google Scholar 

  • von Caemmerer, S., Evans, J.R., Hudson, G.S., Andrews, T.J.: The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. — Planta 195: 88–97, 1994.

    Article  Google Scholar 

  • Warren, C.R.: Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. — J. Exp. Bot. 59: 1475–1487, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Warren, C.R., Adams, M.A.: Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. — Plant Cell Environ. 29: 192–201, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Warren, C.R., Ethier, G.H., Livingston, N.J., Grant, N.J., Turpin, D.H., Harrison, D.L., Black, T.A.: Transfer conductance in second growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) canopies. — Plant Cell Environ. 26: 1215–1227, 2003.

    Article  CAS  Google Scholar 

  • Warren, C.R., Livingston, N.J., Turpin, D.H.: Water stress decreases the transfer conductance of Douglas-fir (Pseudotsuga menziensii) seedlings. — Tree Physiol. 24: 971–979, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X., Zhao, H., Zhang, X. et al.: Different growth sensitivity to enhanced UV-B radiation between male and female Populus cathayana. — Tree Physiol. 30: 1489–1498, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Yang, F., Xiao, X., Zhang, S, et al.: Salt stress responses in Populus cathayana Rehder. — Plant Sci. 176: 669–677, 2009.

    Article  CAS  Google Scholar 

  • Zhang, S., Jiang, H., Peng, S., Korpelainen, H. Li, C.: Sexrelated differences in morphological, physiological and ultrastructural responses of Populus cathayana to chilling. — J. Exp. Bot. 62: 675–686, 2011.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Duan.

Additional information

Acknowledgements: The research was supported by the National Basic Research Program of China (No. 2012CB416901) and the Youth Talent Team Program of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (SDSQB-2012-01).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, G., Huang, T.F., Zhang, X.L. et al. Significance of mesophyll conductance for photosynthetic capacity and water-use efficiency in response to alkaline stress in Populus cathayana seedlings. Photosynthetica 51, 438–444 (2013). https://doi.org/10.1007/s11099-013-0043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0043-0

Additional key words

Navigation