, Volume 51, Issue 3, pp 387–394 | Cite as

Effects of ectopically expressed hyperthermophilic archaeon (Pyrococcus furiosus) ribulose-1,5-bisphosphate carboxylase/oxygenase on tobacco photosynthesis

  • X. -G. Li
  • J. Yang
  • R. Wang
  • X. -F. Tang
  • J. -J. Meng
  • H. -J. Qin
  • X. Liu
  • F. Guo
  • S. -B. Wan


Pyrococcus furiosus is a hyperthermophilic archaeon. Its ribulose-1,5-bisphosphate carboxylase/oxygenase (PfRubisco) has only large subunit (L). PfRubisco has a novel (L2)5, decameric structure and it possesses higher carboxylase activity and thermotolerance. To assess the potential functionality of PfRubisco in higher plants under high-temperature stress, PfRubisco coding sequence was transiently expressed in Nicotiana benthamiana by Pea early browning virus mediated ectopic expression. The transgenic PfRubisco plants produced chlorotic yellow stripes in their leaves. Relative to the control leaves, those with yellow stripes exhibited decreased net photosynthetic rate and chlorophyll content, altered chloroplast ultrastructure, and more severe photoinhibition of both photosystem I and II. We concluded that the ectopic expression of PfRubisco might disrupt the chloroplast development and function in N. benthamiana. The potential cause of the disruption was discussed.

Additional key words

high-temperature stress Nicotiana benthamiana photosynthesis Rubisco virus mediated ectopic expression 





intercellular CO2 concentration


noninoculated plants as a control


maximum yield of chlorophyll fluorescence in dark adapted state


variable fluorescence


maximal photochemical efficiency of PSII


green fluorescent protein


stomatal conductance


large subunit


Nicotiana benthamiana ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit transit peptide gene


nonphotochemical quenching


net photosynthetic rate




quantitative reverse transcription-polymerase chain reaction


large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase


small subunit of Rubisco


reverse transcription-polymerase chain reaction


ribulose-1,5-bisphosphate carboxylase/oxygenase




small subunit


inoculated, transgenic PfRubisco plants


virus mediated ectopic expression


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, X., Yu, C., Wang, D.: Assessment of plant gene functions using viral vectors. — In: Wang, A. (ed.): Principles and Practice of Advanced Technology in Plant Virology. Pp. 311–330. Kerala, India 2010.Google Scholar
  2. Ashida, H., Saito, Y., Nakano, T. et al.: RuBisCO-like proteins as the enolase enzyme in the methionine salvage pathway: functional and evolutionary relationships between RuBisCO-like proteins and photosynthetic RuBisCO. — J. Exp. Bot. 59: 1543–1554, 2008.PubMedCrossRefGoogle Scholar
  3. Atomi, H.: Microbial enzymes involved in carbon dioxide fixation. — J. Biosci. Bioeng. 94: 497–505, 2002.PubMedGoogle Scholar
  4. Atomi, H., Ezaki, S., Imanaka, T.: Ribulose-1,5-bisphosphate carboxylase/oxygenase from Thermococcus kodakaraensis KODl. — Methods Enzymol. 331: 353–365, 2001.PubMedCrossRefGoogle Scholar
  5. Brisson, N., Paszkowski, J., Penswick, J.R. et al.: Expression of a bacterial gene in plants by using a viral vector. — Nature 310: 511–514, 1984.CrossRefGoogle Scholar
  6. Ekengren, S.K., Liu, Y., Schiff, M. et al.: Two MAPK cascades, NPR1, and TGA transcription factors play a role in Ptomediated disease resistance in tomato. — Plant J. 36: 905–917, 2003.PubMedCrossRefGoogle Scholar
  7. Ezaki, S., Maeda, N., Kishimoto, T. et al.: Presence of a structurally novel type ribulose-bisphosphate carboxylase/oxygenase in the hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1. — J. Biol. Chem. 274: 5078–5082, 1999.PubMedCrossRefGoogle Scholar
  8. Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis. — Ann. Rev. Plant Physiol. 33: 317–345, 1982.CrossRefGoogle Scholar
  9. Finn, M.W., Tabita, F.R.: Synthesis of catalytically active form III ribulose 1,5-bisphosphate carboxylase/oxygenase in archaea. — J. Bacteriol. 185: 3049–3059, 2003.PubMedCrossRefGoogle Scholar
  10. Kanevski, I., Maliga, P., Rhoades, D.F., Gutteridge, S.: Plastome engineering of ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid. — Plant Physiol. 119: 133–141, 1999.PubMedCrossRefGoogle Scholar
  11. Kitano, K., Maeda, N., Fukui, T., Atomi, H., Imanaka, T., Miki, K.: Crystal structure of a novel-type archaeal Rubisco with pentagonal symmetry. — Structure 9: 473–481, 2001.PubMedCrossRefGoogle Scholar
  12. Kumar, A., Li, C., Portis Jr., A.R.: Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures. — Photosynth. Res. 100: 143–153, 2009.PubMedCrossRefGoogle Scholar
  13. Larcher, W.: Physiological Plant Ecology, 4th Ed. Springer-Verlag, Berlin, 2003.CrossRefGoogle Scholar
  14. Li, X.G., Duan, W., Meng, Q.W. et al.: The function of chloroplastic NAD(P)H dehydrogenase in tobacco during chilling stress under low irradiance. — Plant Cell Physiol. 45: 103–108, 2004.PubMedCrossRefGoogle Scholar
  15. Liu, Y., Schiff, M., Dinesh-Kumar, S.P.: Virus-induced gene silencing in tomato. — Plant J. 31: 777–786, 2002.PubMedCrossRefGoogle Scholar
  16. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC method. — Method. 25: 402–408, 2001.CrossRefGoogle Scholar
  17. Lobell, D.B., Field, C.B.: Global scale climate-crop yield relationships and the impacts of recent warming. — Environ. Res. Lett. 2: 014002. doi:10.1088/1748-9326/2/1/014002, 2007.CrossRefGoogle Scholar
  18. Maeda, N., Kanai, T., Atomi, H., Imanaka, T.: The unique pentagonal structure of an archaeal Rubisco is essential for its high thermostability. — J. Biol. Chem. 277: 31656–31662, 2002.PubMedCrossRefGoogle Scholar
  19. Quinn, P.J., Williams, W.P.: Environmentally induced changes in chloroplast membranes and their effects on photosynthetic function. — In: Barber, J., Baker, N.R. (ed.): Photosynthetic Mechanisms and the Environment. Pp. 1–47. Elsevier Science Publishers, Amsterdam 1985.Google Scholar
  20. Ryu, C.M., Anand, A., Lang, L., Mysore, K.S.: Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. — Plant J. 40: 322–331, 2004.PubMedCrossRefGoogle Scholar
  21. Salvucci, M.E., Crafts-Brandner, S.J.: Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. — Plant Physiol. 134: 1460–1470, 2004a.PubMedCrossRefGoogle Scholar
  22. Salvucci, M.E., Crafts-Brandner, S.J.: Mechanism for deactivation of Rubisco under moderate heat stress. — Physiol. Plant. 122: 513–519, 2004b.CrossRefGoogle Scholar
  23. Schlenker, W., Roberts, M.J.: Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. — Proc. Natl. Acad. Sci. USA 106: 15594–15598, 2009.PubMedCrossRefGoogle Scholar
  24. Senthil-Kumar, M., Hema, R., Anand, A. et al.: A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. — New Phytol. 176: 782–791, 2007.PubMedCrossRefGoogle Scholar
  25. Senthil-Kumar, M., Udayakumar, M.: High throughput virusinduced gene silencing approach to assess the functional relevance of a moisture stress-induced cDNA homologous to Lea4. — J. Exp. Bot. 57: 2291–2302, 2006.PubMedCrossRefGoogle Scholar
  26. Shah, K., Russinova, E., Gadella Jr., T.W. et al.: The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. — Gene Dev. 16: 1707–1720, 2002.PubMedCrossRefGoogle Scholar
  27. Tabita, F.R.: The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. — In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (ed.): Anoxygenic Photosynthetic Bacteria. Pp. 885–914. Kluwer Academic Publishers, Dordrecht, The Netherlands 1995.Google Scholar
  28. Watson, G.M.F., Tabita, F.R.: Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. — FEMS Microbiol. Lett. 146: 13–22, 1997.PubMedCrossRefGoogle Scholar
  29. Whitney, S.M., Andrews, T.J.: Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco. — Proc. Natl. Acad. Sci. USA 98: 14738–14743, 2001.PubMedCrossRefGoogle Scholar
  30. Whitney, S.M., Baldet, P., Hudson, G.S., Andrews, T.J.: Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. — Plant J. 26: 535–547, 2001.PubMedCrossRefGoogle Scholar
  31. Zhang, Y.J., Yang, J.S., Guo, S.J. et al.: Over-expression of the Arabidopsis CBF1 gene improves resistance of tomato leaves to low temperature under low irradiance. — Plant Biol. 13: 362–367, 2011.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • X. -G. Li
    • 1
  • J. Yang
    • 2
  • R. Wang
    • 2
  • X. -F. Tang
    • 3
  • J. -J. Meng
    • 1
  • H. -J. Qin
    • 4
  • X. Liu
    • 4
  • F. Guo
    • 1
  • S. -B. Wan
    • 1
  1. 1.High-Tech Research Center, Shandong Academy of Agricultural Sciences and Shandong Provincial Key Laboratory of Genetic ImprovementEcology and Physiology of CropsJi’nanChina
  2. 2.Zhengzhou Tobacco Research Institute of ChinaNational Tobacco CorporationZhengzhouChina
  3. 3.College of Life SciencesWuhan UniversityWuhanChina
  4. 4.The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina

Personalised recommendations