Skip to main content
Log in

Interactive effects of temperature and light intensity on photosynthesis and antioxidant enzyme activity in Zizania latifolia Turcz. plants

  • Published:
Photosynthetica

Abstract

We compared the interactive effects of temperature and light intensity on growth, photosynthetic performance, and antioxidant enzyme activity in Zizania latifolia Turcz. plants in this study. Plants were grown under field (average air temperature 9.6–25°C and average light intensity 177–375 W m−2) or greenhouse (20–32°C and 106–225 W m−2) conditions from the spring to the early summer. The results indicated that greenhouse-grown plants (GGP) had significantly higher plant height, leaf length, and leaf width, but lower leaf thickness and total shoot mass per cluster compared with field-grown plants (FGP). Tiller emergence was almost completely suppressed in GGP. Significantly higher chlorophyll (Chl) content and lower Chl a/b ratio were observed in GGP than in FGP. From 4 to 8 weeks after treatment (WAT), net photosynthetic rate (P N) was significantly lower in FGP than in GGP. However, from 9 to 12 WAT, P N was lower in GGP, accompanied by a decrease in stomatal conductance (g s) and electron transport rate (ETR) compared with FGP. Suppressed P N in GGP under high temperature combined with low light was also indicated by photosynthetic photon flux density (PPFD) response curve and its diurnal fluctuation 10 WAT. Meanwhile, ETR in GGP was also lower than in FGP according to the ETR — photosynthetically active radiation (PAR) curve. The results also revealed that GGP had a lower light saturation point (LSP) and a higher light compensation point (LCP). From 4 to 8 WAT, effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching (qP), and ETR were slightly lower in FGP than in GGP. The activities of ascorbate peroxidase (APX), guaiacol peroxidase (POD), glutathione reductase (GR), superoxide dismutase (SOD), and malondialdehyde (MDA) content were significantly higher from 4 to 8 WAT, but lower from 10 to 12 WAT in FGP. However, catalase (CAT) activity was significantly lower in FGP from 4 to 8 WAT. Our results indicated that the growth and photosynthetic performance of Z. latifolia plants were substantially influenced by temperature, as well as light intensity. This is helpful to understand the physiological basis for a protected cultivation of this crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

AsA:

ascorbic acid

C i :

intercellular CO2 concentration

CAT:

catalase

Chl:

chlorophyll

DM:

dry mass

E :

transpiration rate

ETR:

electron transport rate

FGP:

field-grown plants

FM:

fresh mass

F0 :

minimal fluorescence yield of the dark-adapted state

F0′:

minimal fluorescence yield of the light-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

Fm′:

maximal fluorescence yield of the light-adapted state

Fs :

steady-state fluorescence yield

Fv :

variable fluorescence

Fv/Fm :

maximal quantum yield of PSII photochemistry

GGP:

greenhouse-grown plants

GR:

glutathione reductase

g s :

stomatal conductance

LCP:

light-compensation point

LSP:

light-saturation point

MDA:

malondialdehyde

NPQ:

nonphotochemical quenching

PAR:

photosynthetically active radiation

P Nmax :

light-saturated net photosynthetic rate

P N :

net photosynthetic rate

POD:

guaiacol peroxidase

PPFD:

photosynthetic photon flux density

PSII:

photosystem II

qP :

photochemical quenching

ROS:

reactive oxygen species

SOD:

superoxide dismutase

WAT:

weeks after treatment

ΦPSII :

effective quantum yield of PSII photochemistry

References

  • Allen, D.J., Ort, D.R.: Impacts of chilling temperatures on photosynthesis in warm-climate plants. — Trends Plant Sci. 6: 36–42, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Almeselmani, M., Deshmukh, P.S., Sairam, R.K., Kushwaha, S.R., Singh, T.P.: Protective role of antioxidant enzymes under high temperature stress. — Plant Sci. 171: 382–388, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Ballantine, J.E.M., Forde, B.J.: The effect of light intensity and temperature on plant growth and chloroplast ultrastructure in soybean. — Amer. J. Bot. 57: 1150–1159, 1970.

    Article  CAS  Google Scholar 

  • Berry, J., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants. — Annu. Rev. Plant Physiol. 31: 491–543, 1980.

    Article  Google Scholar 

  • Bos, H.J., Neuteboom, J.H.: Morphological analysis and tiller number dynamics of wheat (Triticum aestivum L.): responses to temperature and light intensity. — Ann. Bot. 81: 131–139, 1998.

    Article  Google Scholar 

  • Chou, C.C., Chen, W.S., Huang, K.L. et al.: Changes in cytokinin levels of Phalaenopsis leaves at high temperature. — Plant Physiol. Biochem. 38: 309–314, 2000.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 599–626, 1992.

    Article  CAS  Google Scholar 

  • Ding, X., Shi, G., Chen, W., Xu, X.: [Morphological studies on the development and cold resistance of the winter buds of Zizania caduciflora Hand.-Mazz.] — J. Wuhan Bot. Res. 11: 104–110, 1993. [In Chin.]

    Google Scholar 

  • Dizengremel, P., Le Thiec, D., Bagard, M., Jolivet, Y.: Ozone risk assessment for plants: central role of metabolismdependent changes in reducing power. — Environ. Pollut. 156: 11–15, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Farage, P.K., Long, S.P.: The occurrence of photoinhibition in an over-wintering crop of oil-seed rape (Brassica napus L.) and its correlation with changes in crop growth. — Planta 185: 279–286, 1991.

    Article  Google Scholar 

  • Foyer, C.H., Halliwell, B.: The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. — Planta 133: 21–25, 1976.

    Article  Google Scholar 

  • Friend, D.J.C.: Tillering and leaf production in wheat as affected by temperature and light intensity. — Can. J. Bot. 43: 1063–1076, 1965.

    Article  Google Scholar 

  • Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Gilmore, A.M.: Mechanistic aspects of xanthophylls cycledependent photoprotection in higher plant chloroplasts and leaves. — Physiol. Plant. 99: 197–209, 1997.

    Article  CAS  Google Scholar 

  • Govindachary, S., Bukhov, N.G., Joly, D., Carpentier, R.: Photosystem II inhibition by moderate light under low temperature in intact leaves of chilling-sensitive and -tolerant plants. — Physiol. Plant. 121: 322–333, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Groom, Q.J., Baker, N.R.: Analysis of light-induced depressions of photosynthesis in leaves of a wheat crop during the winter. — Plant Physiol. 100: 1217–1223, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Guo, D.P., Jiang, Y.T., Zeng, G.W., Shah, G.A.: Stem swelling of stem mustard, as affected by temperature and growth regulators. — Sci. Hort. 60: 153–160, 1994.

    Article  CAS  Google Scholar 

  • Guo, Y.P., Zhou, H.F., Zhang, L.C.: Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. — Sci. Hort. 108: 260–267, 2006.

    Article  CAS  Google Scholar 

  • Hunt, W., Thomas, V.: Growth and developmental responses of perennial ryegrass grown at constant temperature. II. Influence of light and temperature on leaf, tiller and root appearance. — Funct. Plant Biol. 12: 69–76, 1985.

    Google Scholar 

  • Ishihara, K., Saitoh, K.: Diurnal courses of photosynthesis, transpiration, and diffusive conductance in the single-leaf of the rice plants grown in the paddy field under submerged condition. — Jpn. J. Crop Sci. 56: 8–17, 1987.

    Article  Google Scholar 

  • Islam, S., Izekor, E., Garner, J.O.: Effect of chilling stress on the chlorophyll fluorescence, peroxidase activity and other physiological activities in Ipomoea batatas L. genotypes. — Am. J. Plant Physiol. 6: 72–82, 2011.

    Article  CAS  Google Scholar 

  • Korner, C., Diemer, M.: In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. — Funct. Ecol. 1: 179–194, 1987.

    Article  Google Scholar 

  • Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis-the basics. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 313–349, 1991.

    Article  CAS  Google Scholar 

  • Laloi, C., Apel, K., Danon, A.: Reactive oxygen signaling: the latest news. — Curr. Opin. Plant Biol. 7: 323–328, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D.H., Lee, C.B.: Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. — Plant Sci. 159: 75–85, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler, H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic membranes. — Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Lidon, F.C., Henriques, F.S.: Oxygen metabolism in higher plant chloroplasts. — Photosynthetica 29: 249–279, 1993.

    CAS  Google Scholar 

  • Martin, B., Ort, D.R., Boyer, J.S.: Impairment of photosynthesis by chilling-temperatures in tomato. — Plant Physiol. 68: 329–334, 1981.

    Article  PubMed  CAS  Google Scholar 

  • McMaster, G.S., Wilhelm, W.W., Palic, D.B. et al.: Spring wheat leaf appearance and temperature: Extending the paradigm? — Ann. Bot. 91: 697–705, 2003.

    Article  PubMed  Google Scholar 

  • Mooney, H.A., Björkman, O., Collatz, G.J.: Photosynthetic acclimation to temperature in desert shrub, Larrea divaricata. 1. Carbon-dioxide exchange characteristics of intact leaves. — Plant Physiol. 61: 406–410, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Pastenes, C., Horton, P.: Effect of high temperature on photosynthesis in beans II. CO2 assimilation and metabolite contents. — Plant Physiol. 112: 1253–1260, 1996.

    PubMed  CAS  Google Scholar 

  • Patra, H.K., Kar, M., Mishra, D.: Catalase activity in leaves and cotyledons during plant development and senescence. — Biochem. Physiol. Pflanz. 172: 385–390, 1978.

    CAS  Google Scholar 

  • Percival, G.C.: The use of chlorophyll fluorescence to identify chemical and environmental stress in leaf tissue of three oak (Quercus) species. — J. Arbor. 31: 215–227, 2005.

    Google Scholar 

  • Perelman, A., Dubinsky, Z., Martínez, R.: Temperature dependence of superoxide dismutase activity in plankton. — J. Exp. Mar. Bio. Ecol. 334: 229–235, 2006.

    Article  CAS  Google Scholar 

  • Prado, C.H.B.A., De Moraes, J.A.P.V.: Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions. — Photosynthetica 33: 103–112, 1997.

    Article  Google Scholar 

  • Qaderi, M.M., Reid, D.M.: Crop responses to elevated carbon dioxide and temperature. In: Singh, S.N. (ed.), Climate Change and Crops. — Springer-Verlag, Berlin Heidelberg, 1–18, 2009.

    Chapter  Google Scholar 

  • Ruelland, E., Zachowski, A.: How plants sense temperature. — Environ. Exp. Bot. 69: 225–232, 2010.

    Article  Google Scholar 

  • Ryle, G.J.A.: A comparison of leaf and tiller growth in seven perennial grasses as influenced by nitrogen and temperature. — Grass Forage Sci. 19: 281–290, 1964.

    Article  CAS  Google Scholar 

  • Salin, M.L.: Toxic oxygen species and protective systems of the chloroplast. — Physiol. Plant. 72: 681–689, 1988.

    Article  CAS  Google Scholar 

  • Salvucci, M.E., Osteryoung, K.W., Crafts-Brandner, S.J., Vierling, E.: Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. — Plant Physiol. 127: 1053–1064, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Silim, S.N., Ryan, N., Kubien, D.S.: Temperature responses of photosynthesis and respiration in Populus balsamifera L.: acclimation versus adaptation. — Photosynth. Res. 104: 19–30, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Špundová, M., Slouková, K., Hunková, M., Nauš, J.: Plant shading increases lipid peroxidation and intensifies senescence-induced changes in photosynthesis and activities of ascorbate peroxidase and glutathione reductase in wheat. — Photosynthetica 43: 403–409, 2005.

    Article  Google Scholar 

  • Stewart, R.R.C., Bewley, J.D.: Lipid peroxidation associated with accelerated aging of soybean axes. — Plant Physiol. 65: 245–248, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Tenhunen, J.D., Lange, O.L., Gebel, J., Beyschlag, W., Weber, J.A.: Changes in photosynthetic capacity, carboxylation efficiency, and CO2 compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of Quercus suber. — Planta 162: 193–203, 1984.

    Article  CAS  Google Scholar 

  • Turan, Ö., Ekmekçi, Y.: Activities of photosystem II and antioxidant enzymes in chickpea (Cicer arietinum L.) cultivars exposed to chilling temperatures. — Acta Physiol. Plant. 33: 67–68, 2011.

    Article  CAS  Google Scholar 

  • Van Kooten, O., Snel, J.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. — Photosynth. Res. 25: 147–150, 1990.

    Article  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R.: Heat tolerance in plants: an overview. — Environ. Exp. Bot. 61: 199–223, 2007.

    Article  Google Scholar 

  • Weis, E.: Reversible heat-inactivation of the Calvin cycle: A possible mechanism of the temperature regulation of photosynthesis. — Planta 151: 33–39, 1981.

    Article  CAS  Google Scholar 

  • Wise, R.R., Olson, A.J., Schrader, S.M., Sharkey, T.D.: Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. — Plant Cell Environ. 27: 717–724, 2004.

    Article  CAS  Google Scholar 

  • Yamasaki, T., Yamakawa, T., Yamane, Y. et al.: Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat. — Plant Physiol. 128: 1087–1097, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Yamori, W., Noguchi, K., Kashino, Y., Terashima, I.: The role of electron transport in determining the temperature dependence of the photosynthetic rate in spinach leaves grown at contrasting temperatures. — Plant Cell Physiol. 49: 583–591, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, F.L.: [Preliminary study on growth dynamics of doubleharvest Zizania latifolia: I. Autumn-harvest variety.] — Chin. Veg. 2: 31–33, 1991a. [In Chin.]

    Google Scholar 

  • Zhang, F.L.: [Preliminary study on growth dynamics of doubleharvest Zizania latifolia: I. Summer-harvest variety.] — Chin. Veg. 3: 28–30, 1991b. [In Chin.]

    Google Scholar 

  • Zhang, J.Z., Chu, F.Q., Guo, D.P. et al.: Cytology and ultrastructure of interactions between Ustilago esculenta and Zizania latifolia. — Mycol. Prog. 11: 499–508, 2012.

    Article  CAS  Google Scholar 

  • Zheng, Y., Mai, B., Wu, R. et al.: Acclimation of winter wheat (Triticum aestivum, cv. Yangmai 13) to low levels of solar irradiance. — Photosynthetica 49: 426–434, 2011.

    Article  CAS  Google Scholar 

  • Zinn, K.E., Tunc-Ozdemir, M., Harper, J.F.: Temperature stress and plant sexual reproduction: uncovering the weakest links. — J. Exp. Bot. 61: 1959–1968, 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. -P. Guo.

Additional information

Acknowledgements: This research was supported by the Special Fund for Agro-scientific Research in the Public Interest of China (No: 200903017-03).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, N., Xu, X.F., Wang, Z.D. et al. Interactive effects of temperature and light intensity on photosynthesis and antioxidant enzyme activity in Zizania latifolia Turcz. plants. Photosynthetica 51, 127–138 (2013). https://doi.org/10.1007/s11099-013-0009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0009-2

Additional key words

Navigation