International Journal of Clinical Pharmacy

, Volume 33, Issue 1, pp 10–19 | Cite as

Clinical applications of pharmacogenomics guided warfarin dosing

  • Pramod Mahajan
  • Kristin S. Meyer
  • Geoffrey C. Wall
  • Heidi J. Price
Review Article


Aim of the Review To assess the state of the literature concerning pharmacogenomic testing in patients requiring vitamin K antagonists, specifically warfarin. Method We conducted a literature search of MEDLINE and International Pharmaceutical Abstracts using the following words: warfarin, pharmacogenetic, and pharmacogenomic. The search results were reviewed by the authors and papers concerning pharmacogenomic testing in warfarin dosing were procured and reviewed. Additionally bibliographies of papers procured were also examined for other studies. The authors focused on clinical trials concerning the use of pharmacogenomic testing in warfarin dosing. Results Although numerous studies have demonstrated that a significant portion of warfarin dosing variability can be explained by genetic polymorphisms, few prospective studies have been conducted that examine the integration of this information in practical dosing situations. Those that have, have shown that using pharmacogenomic information improves initial dosing estimates and decreases the need for frequent clinic visits and laboratory testing. Data showing a reduction in serious bleeding events is sparse. Cost-effectiveness analyses have generally shown a small but positive effect with pharmacogenomic testing in patients receiving warfarin. Conclusion Several studies have shown that pharmacogenomic testing for warfarin dosing is more accurate that other dosing schemes. Pharmacogenomic testing improves time to a therapeutic international normalized ratio while requiring fewer dosing adjustments. Patients who require higher or lower than usual doses seem to benefit the most. The cost-effectiveness of pharmacogenomic testing as well as preventing of outcomes such as bleeding or thrombosis are not yet elucidated. Pharmacists, especially those in a community setting can play a role in this new technology by educating prescribers and patients concerning pharmacogenomic testing, and by developing and using dosing protocols that incorporate its use.


Dosing Pharmacogenetics Pharmacogenomics Vitamin K antagonists Warfarin 




Conflicts of interest

None of the authors have any real or potential conflicts of interest concerning this work.


  1. 1.
    Wysowski DK, Nourjah P, Swartz L. Bleeding complications with warfarin use: a prevalent adverse effect resulting in regulatory action. Arch Intern Med. 2007;167:1414–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Limdi NA, Veenstra DL. Warfarin pharmacogenetics. Pharmacotherapy. 2008;28:1084–97.PubMedCrossRefGoogle Scholar
  3. 3.
    Chiquette E, Amato MG, Bussey HI. Comparison of an anticoagulation clinic with usual medical care: anticoagulation control, patient outcomes, and health care costs. Arch Intern Med. 1998;158:1641–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Wilt VM, Gums JG, Ahmed OI, Moore LM. Outcome analysis of a pharmacist-managed anticoagulation service. Pharmacotherapy. 1995;15:732–9.PubMedGoogle Scholar
  5. 5.
    Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet Med. 2005;7:97–104.PubMedCrossRefGoogle Scholar
  6. 6.
    Lindh JD, Holm L, Andersson ML, Rane A. Influence of CYP2C9 genotype on warfarin dose requirements—a systematic review and meta-analysis. Eur J Clin Pharmacol. 2009;65:365–75.PubMedCrossRefGoogle Scholar
  7. 7.
    Rosove MH, Grody WW. Should we be applying warfarin pharmacogenetics to clinical practice? No, not now. Ann Intern Med. 2009;151:270–3.PubMedGoogle Scholar
  8. 8.
    Kamali F, Wynne H. Pharmacogenetics of warfarin. Annu Rev Med. 2010;61:63–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Stehle S, Kirchheiner J, Lazar A, Fuhr U. Pharmacogenetics of oral anticoagulants: a basis for dose individualization. Clin Pharmacokinet. 2008;47:565–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Herman D, Locatelli I, Grabnar I, Peternel P, Stegnar M, Mrhar A, et al. Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J. 2005;5:193–202.PubMedCrossRefGoogle Scholar
  11. 11.
    Gage BF, Eby C, Milligan PE, Banet GA, Duncan JR, McLeod HL. Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb Haemost. 2004;91:87–94.PubMedGoogle Scholar
  12. 12.
    Caldwell MD, Berg RL, Zhang KQ, Glurich I, Schmelzer JR, Yale SH, et al. Evaluation of genetic factors for warfarin dose prediction. Clin Med Res. 2007;5:8–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Gulseth MP, Grice GR, Dager WE. Pharmacogenomics of warfarin: uncovering a piece of the warfarin mystery. Am J Health Syst Pharm. 2009;66:123–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Adcock DM, Koftan C, Crisan D, Kiechle FL. Effect of polymorphisms in the cytochrome P450 CYP2C9 gene on warfarin anticoagulation. Arch Pathol Lab Med. 2004;128:1360–3.PubMedGoogle Scholar
  15. 15.
    Gan GG, Phipps ME, Ku CS, Teh A, Sangkar V. Genetic polymorphism of the CYP2C9 subfamily of 3 different races in warfarin maintenance dose. Int J Hematol. 2004;80:295–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Carlquist JF, Horne BD, Muhlestein JB, Lappé DL, Whiting BM, Kolek MJ, et al. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J Thromb Thrombolysis. 2006;22:191–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Tham LS, Goh BC, Nafziger A, Guo JY, Wang LZ, Soong R, et al. A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther. 2006;80:346–55.PubMedCrossRefGoogle Scholar
  18. 18.
    Meckley LM, Wittkowsky AK, Rieder MJ, Rettie AE, Veenstra DL. An analysis of the relative effects of VKORC1 and CYP2C9 variants on anticoagulation related outcomes in warfarin-treated patients. Thromb Haemost. 2008;100:229–39.PubMedGoogle Scholar
  19. 19.
    Yin T, Hanada H, Miyashita K, Kokubo Y, Akaiwa Y, Otsubo R, et al. No association between vitamin K epoxide reductase complex subunit 1-like 1 (VKORC1L1) and the variability of warfarin dose requirement in a Japanese patient population. Thromb Res. 2008;122:179–84.PubMedCrossRefGoogle Scholar
  20. 20.
    Wen MS, Lee M, Chen JJ, Chuang HP, Lu LS, Chen CH, et al. Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes. Clin Pharmacol Ther. 2008;84:83–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Wu AH, Wang P, Smith A, Haller C, Drake K, Linder M, et al. Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations. Pharmacogenomics. 2008;9:169–78.PubMedCrossRefGoogle Scholar
  22. 22.
    Fuchshuber-Moraes M, Perini JA, Rosskopf D, Suarez-Kurtz G. Exploring warfarin pharmacogenomics with the extreme-discordant-phenotype methodology: impact of FVII polymorphisms on stable anticoagulation with warfarin. Eur J Clin Pharmacol. 2009;65:789–93.PubMedCrossRefGoogle Scholar
  23. 23.
    Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood. 2010;115:3827–34.PubMedCrossRefGoogle Scholar
  24. 24.
    Voora D, Eby C, Linder MW, Milligan PE, Bukaveckas BL, McLeod HL, et al. Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype. Thromb Haemost. 2005;93:700–5.PubMedGoogle Scholar
  25. 25.
    Kimura R, Miyashita K, Kokubo Y, Akaiwa Y, Otsubo R, Nagatsuka K, et al. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res. 2007;120:181–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Kosaki K, Yamaghishi C, Sato R, Semejima H, Fuijita H, Tamura K, et al. 1173C>T polymorphism in VKORC1 modulates the required warfarin dose. Pediatr Cardiol. 2006;27:685–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Schalekamp T, Brassé BP, Roijers JF, Chahid Y, van Geest-Daalderop JH, de Vries-Goldschmeding H, et al. VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation. Clin Pharmacol Ther. 2006;80:13–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Lal S, Sandanaraj E, Jada SR, Kong MC, Lee LH, Goh BC, et al. Influence of APOE genotypes and VKORC1 haplotypes on warfarin dose requirements in Asian patients. Br J Clin Pharmacol. 2008;65:260–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Tanira MO, Al-Mukhaini MK, Al-Hinai AT, Al Balushi KA, Ahmed IS. Frequency of CYP2C9 genotypes among Omani patients receiving warfarin and its correlation with warfarin dose. Community Genet. 2007;10:32–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84:326–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Limdi NA, Arnett DK, Goldstein JA, Beasley TM, McGwin G, Adler BK, et al. Influence of CYP2C9 and VKORC1 on warfarin dose, anticoagulation attainment and maintenance among European-Americans and African-Americans. Pharmacogenomics. 2008;9:511–26.PubMedCrossRefGoogle Scholar
  32. 32.
    Limdi NA, Beasley TM, Crowley MR, Goldstein JA, Rieder MJ, Flockhart DA, et al. VKORC1 polymorphisms, haplotypes and haplotype groups on warfarin dose among African-Americans and European-Americans. Pharmacogenomics. 2008;9:1445–58.PubMedCrossRefGoogle Scholar
  33. 33.
    Huang SW, Chen HS, Wang XQ, Huang L, Xu DL, Hu XJ, et al. Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: a prospective study in Chinese patients. Pharmacogenet Genomics. 2009;19:226–34.PubMedCrossRefGoogle Scholar
  34. 34.
    Palacio L, Falla D, Tobon I, Mejia F, Lewis JE, Martinez AF, et al. Pharmacogenetic impact of VKORC1 and CYP2C9 allelic variants on warfarin dose requirements in a hispanic population isolate. Clin Appl Thromb Hemost. 2010;16:83–90.PubMedCrossRefGoogle Scholar
  35. 35.
    Meckley LM, Gudgeon JM, Anderson JL, Williams MS, Veenstra DL. A policy model to evaluate the benefits, risks and costs of warfarin pharmacogenomic testing. Pharmacoeconomics. 2010;28:61–74.PubMedCrossRefGoogle Scholar
  36. 36.
    Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 2009;5:1000433.CrossRefGoogle Scholar
  37. 37.
    Pautas E, Moreau C, Gouin-Thibault I, Golmard JL, Mahé I, Legendre C, et al. Genetic factors (VKORC1, CYP2C9, EPHX1, and CYP4F2) are predictor variables for warfarin response in very elderly, frail inpatients. Clin Pharmacol Ther. 2010;87:57–64.PubMedCrossRefGoogle Scholar
  38. 38.
    Kealey C, Chen Z, Christie J, Thorn CF, Whitehead AS, Price M, et al. Warfarin and cytochrome P450 2C9 genotype: possible ethnic variation in warfarin sensitivity. Pharmacogenomics. 2007;8:217–25.PubMedCrossRefGoogle Scholar
  39. 39.
    Momary KM, Shapiro NL, Viana MA, Nutescu EA, Helgason CM, Cavallari LH. Factors influencing warfarin dose requirements in African-Americans. Pharmacogenomics. 2007;8:1535–44.PubMedCrossRefGoogle Scholar
  40. 40.
    Visser LE, van Vliet M, van Schaik RH, Kasbergen AA, De Smet PA, Vulto AG, et al. The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics. 2004;14:27–33.PubMedCrossRefGoogle Scholar
  41. 41.
    Topic E, Stefanovic M, Samardzija M. Association between the CYP2C9 polymorphism and the drug metabolism phenotype. Clin Chem Lab Med. 2004;42:72–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Ngow H, Teh LK, Langmia IM, Lee WL, Harun R, Ismail R, Salleh MZ. Role of pharmacodiagnostic of CYP2C9 variants in the optimization of warfarin therapy in Malaysia: a 6-month follow-up study. Xenobiotica. 2008;38:641–51.PubMedCrossRefGoogle Scholar
  43. 43.
    Ohno M, Yamamoto A, Ono A, Miura G, Funamoto M, Takemoto Y, et al. Influence of clinical and genetic factors on warfarin dose requirements among Japanese patients. Eur J Clin Pharmacol. 2009;65:1097–103.PubMedCrossRefGoogle Scholar
  44. 44.
    Miao L, Yang J, Huang C, Shen Z. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients. Eur J Clin Pharmacol. 2007;63:1135–41.PubMedCrossRefGoogle Scholar
  45. 45.
    Lenzini PA, Grice GR, Milligan PE, Dowd MB, Subherwal S, Deych E, et al. Laboratory and clinical outcomes of pharmacogenetic vs. clinical protocols for warfarin initiation in orthopedic patients. J Thromb Haemost. 2008;6:1655–62.PubMedCrossRefGoogle Scholar
  46. 46.
    Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113:784–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106:2329–33.PubMedCrossRefGoogle Scholar
  48. 48.
    International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360:753–64.PubMedCrossRefGoogle Scholar
  49. 49.
    Airee A, Guirguis AB, Mohammad RA. Clinical outcomes and pharmacists’ acceptance of a community hospital’s anticoagulation management service utilizing decentralized clinical staff pharmacists. Ann Pharmacother. 2009;43:621–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Willey ML, Chagan L, Sisca TS, et al. A pharmacist-managed anticoagulation clinic: six-year assessment of patient outcomes. Am J Health Syst Pharm. 2003;60:1033–7.PubMedGoogle Scholar
  51. 51.
    Amruso NA. Ability of clinical pharmacists in a community pharmacy setting to manage anticoagulation therapy. J Am Pharm Assoc. 2004;44:467–71.CrossRefGoogle Scholar
  52. 52.
    Lee KC, Ma JD, Kuo GM. Pharmacogenomics: bridging the gap between science and practice. J Am Pharm Assoc. 2010;50:e1–14.CrossRefGoogle Scholar
  53. 53.
    Leey JA, McCabe S, Koch JA, Miles TP. Cost-effectiveness of genotype-guided warfarin therapy for anticoagulation in elderly patients with atrial fibrillation. Am J Geriatr Pharmacother. 2009;7:197–203.PubMedCrossRefGoogle Scholar
  54. 54.
    Patrick AR, Avorn J, Choudhry NK. Cost-effectiveness of genotype-guided warfarin dosing for patients with atrial fibrillation. Circ Cardiovasc Qual Outcomes. 2009;2:429–36.PubMedCrossRefGoogle Scholar
  55. 55.
    Eckman MH, Rosand J, Greenberg SM, Gage BF. Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation. Ann Intern Med. 2009;150:73–83.PubMedGoogle Scholar
  56. 56.
    Clemerson JP, Payne K, Bissell P, Anderson C. Pharmacogenetics, the next challenge for pharmacy? Pharm World Sci. 2006;28:126–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Limdi NA, Wiener H, Goldstein JA, Acton RT, Beasley TM. Influence of CYP2C9 and VKORC1 on warfarin response during initiation of therapy. Blood Cells Mol Dis. 2009;43:119–28.PubMedCrossRefGoogle Scholar
  58. 58.
    Beckman L. Are genetic self-tests dangerous? Assessing the commercialization of genetic testing in terms of personal autonomy. Theor Med Bioeth. 2004;25:387–98.PubMedCrossRefGoogle Scholar
  59. 59.
    Kadafour M, Haugh R, Posin M, Kayser SR, Shin J. Survey on warfarin pharmacogenetic testing among anticoagulation providers. Pharmacogenomics. 2009;10:1853–60.PubMedCrossRefGoogle Scholar
  60. 60.
    Lenzini P, Wadelius M, Kimmel S, Anderson JL, Jorgensen AL, Pirmohamed M, et al. Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin Pharmacol Ther. 2010;87:572–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation. 2007;116:2563–70.PubMedCrossRefGoogle Scholar
  62. 62.
    Schwarz UI, Ritchie MD, Bradford Y, Li C, Dudek SM, Frye-Anderson A, et al. Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med. 2008;358:999–1008.PubMedCrossRefGoogle Scholar
  63. 63.
    Li C, Schwarz UI, Ritchie MD, Roden DM, Stein CM, Kurnik D. Relative contribution of CYP2C9 and VKORC1 genotypes and early INR response to the prediction of warfarin sensitivity during initiation of therapy. Blood. 2009;113:3925–30.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Pramod Mahajan
    • 1
  • Kristin S. Meyer
    • 1
    • 2
  • Geoffrey C. Wall
    • 1
    • 3
  • Heidi J. Price
    • 1
  1. 1.College of Pharmacy and Health SciencesDrake UniversityDes MoinesUSA
  2. 2.Iowa Veterans HomeMarshalltownUSA
  3. 3.Iowa Methodist Medical CenterDes MoinesUSA

Personalised recommendations