Pharmacy World & Science

, Volume 32, Issue 6, pp 822–828 | Cite as

Evaluation of three brands of drug interaction software for use in intensive care units

  • Adriano Max Moreira ReisEmail author
  • Silvia Helena De Bortoli Cassiani
Research Article


Objective To evaluate drug interaction software programs and determine their accuracy in identifying drug-drug interactions that may occur in intensive care units. Setting The study was developed in Brazil. Method Drug interaction software programs were identified through a bibliographic search in PUBMED and in LILACS (database related to the health sciences published in Latin American and Caribbean countries). The programs’ sensitivity, specificity, and positive and negative predictive values were determined to assess their accuracy in detecting drug–drug interactions. The accuracy of the software programs identified was determined using 100 clinically important interactions and 100 clinically unimportant ones. Stockley’s Drug Interactions 8th edition was employed as the gold standard in the identification of drug-drug interaction. Main outcome Sensitivity, specificity, positive and negative predictive values. Results The programs studied were: Drug Interaction Checker (DIC), Drug-Reax (DR), and Lexi-Interact (LI). DR displayed the highest sensitivity (0.88) and DIC showed the lowest (0.69). A close similarity was observed among the programs regarding specificity (0.88–0.92) and positive predictive values (0.88–0.89). The DIC had the lowest negative predictive value (0.75) and DR the highest (0.91). Conclusion The DR and LI programs displayed appropriate sensitivity and specificity for identifying drug–drug interactions of interest in intensive care units. Drug interaction software programs help pharmacists and health care teams in the prevention and recognition of drug–drug interactions and optimize safety and quality of care delivered in intensive care units.


Brazil Drug–drug interactions Drug interactions Intensive care units Pharmacotherapy 



The Brazilian Coordination for the Improvement of Higher Education Personnel—CAPES funded this research.

Conflicts of interest



  1. 1.
    Mouly S, Meune C, Bergmann JF. Mini-series: I. Basic science. Uncertainty and inaccuracy of predicting CYP-mediated in vivo drug interactions in the ICU from in vitro models: focus on CYP3A4. Intensive Care Med. 2009;35(3):417–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Spriet I, Meersseman W, de Hoon J, et al. Mini-series: II. Clinical aspects. Clinically relevant CYP450-mediated drug interactions in the ICU. Intensive Care Med. 2009;35(4):603–12.CrossRefPubMedGoogle Scholar
  3. 3.
    Barrons R. Evaluation of personal digital assistant software for drug interactions. Am J Health Syst Pharm. 2004;61(4):380–5.PubMedGoogle Scholar
  4. 4.
    Weideman RA, Bernstein IH, McKinney WP. Pharmacist recognition of potential drug interactions. Am J Health Syst Pharm. 1999;56(15):1524–9.PubMedGoogle Scholar
  5. 5.
    Abarca J, Colon LR, Wang VS, Malone DC, Murphy JE. Armstrong E. Evaluation of the performance of drug–drug interaction screening software in community and hospital pharmacies. J Manag Care Pharm. 2006;12(5):383–9.PubMedGoogle Scholar
  6. 6.
    Dallenbach MF, Bovier PA, Desmeules J. Detecting drug interactions using personal digital assistants in an out-patient clinic. QJM. 2007;100(11):691–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Clauson KA, Polen HH, Marsh WA. Clinical decision support tools: performance of personal digital assistant versus online drug information databases. Pharmacotherapy. 2007;27(12):1651–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Perkins NA, Murphy JE, Malone DC, Armstrong EP. Performance of drug–drug interaction software for personal digital assistants. Ann Pharmacother. 2006;40(5):850–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Lam MV, McCart MG, Tsourounis C. An assessment of free, online drug–drug interaction screening programs (DSPs). Hosp Pharm. 2003;38(7):662–8.Google Scholar
  10. 10.
    Pham PA. Drug–drug interaction programs in clinical practice. Clin Pharmacol Ther. 2008;83(3):396–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Vonbach P, Dubied A, Krähenbühl S, Beer JH. Evaluation of frequently used drug interaction screening programs. Pharm World Sci. 2008;30(4):367–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Baxter K (Ed). Stockley’s drug interactions. 8th ed. London: Pharmaceutical Press; 2008. ISBN 978-0-85369-755-8.Google Scholar
  13. 13.
    Romac DR, Albertson TE. Drug interactions in the intensive care unit. Clin Chest Med. 1999;20(2):385–99.CrossRefPubMedGoogle Scholar
  14. 14.
    Mann HJ, Wittbrodt ET. Identifying drug usage patterns in the intensive care unit. Pharmacoeconomics. 1993;4(4):235–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Mann HJ. Drug-associated disease: cytocrome P450 interactions. Crit Care Clin. 2006;22(2):329–45.CrossRefPubMedGoogle Scholar
  16. 16.
    Biswal SP, Mishra S, Malhotra, Puri GD, Pandhi P. Drug utilization pattern in the intensive care unit of a tertiary care hospital. J.Clin.Pharmacol. 2006;46(8):945–51.CrossRefPubMedGoogle Scholar
  17. 17.
    Hammes JA, Pfuetzenreiter F, Silveira F, Koenig A, Westphal GA. Potential drug interactions prevalence in intensive care units. Rev Bras Terap Intensiva. 2008;20(4):349–54.Google Scholar
  18. 18.
    Bustamante GDD, Cabrera C, Duran GMG, Medina TJN. Detección de interacciones medicamentosas, em pacientes ingresados a la unidad de cuidados intensivos del Instituto Autônomo Hospital Universitário de los Andes. Vitae Academia Biomédica Digita. 2005;25(7):1–16.Google Scholar
  19. 19.
    Gordis L. Epidemiology. 2 ed. Philadelphia: W.B.Saunders Company; 2000. ISBN 0-7216-8338-X.Google Scholar
  20. 20.
    Rodríguez-Terol A, Caraballo MO, Palma D, Santos-Ramos B, Molina T, Desongles T, Aguilar A. Quality of interaction database management systems. Farm Hosp. 2009;33(3):134–46.CrossRefPubMedGoogle Scholar
  21. 21.
    Drug checker interaction. Medscape. Available from URL: Accessed Oct 29 2009.
  22. 22.
    Drug Reax system. Micromedex 1. Thomson Reuters (Healthcare). Available from URL: Accessed Oct 28 2009.
  23. 23. Drug interaction checker. Available from URL: Accessed Oct 29 2009.
  24. 24.
    Drugdigest. Check interaction. Available from URL: Acessed Oct 28 2009.
  25. 25.
    Epocrates. Epocrates online. Available from URL: Accessed Oct 27 2009.
  26. 26.
    Lexi-comp online. Lexi-interact. Available from URL: Accessed Oct 26 2009.
  27. 27.
    Ko Y, Abarca J, Malone DC, Dare DC, Geraets D, Houranieh A, Jones WN, Nichol WP, Schepers GP, Wilhardt M. Practitioners’ views on computerized drug-drug interaction alerts in the VA system. J Am Med Inform Assoc. 2007;14(1):56–64.CrossRefPubMedGoogle Scholar
  28. 28.
    Paterno MD, Maviglia SM, Gorman PN, et al. Tiering drug–drug interaction alerts by severity increases compliance rates. J Am Med Inform Assoc. 2009;16(1):40–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Williams NT. Medication administration through enteral feeding tubes. Am J Health Syst Pharm. 2008;65(24):2347–57.CrossRefPubMedGoogle Scholar
  30. 30.
    Amariles P, Giraldo NA, Faus MJ. Interacciones medicamentosas : aproximación para estabelecer y evaluar su relevância clínica. Med Clin. 2007;129(1):27–35.CrossRefGoogle Scholar
  31. 31.
    Rodríguez Terol A, Santos Ramos B, Caraballo Camacho M, Ollero Baturone M. Relevancia clínica de las interacciones medicamentosas. Med Clin. 2008;130(19):758–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Adriano Max Moreira Reis
    • 1
    Email author
  • Silvia Helena De Bortoli Cassiani
    • 2
  1. 1.Faculty of PharmacyFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Ribeirão Preto College of NursingUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations