Skip to main content
Log in

A Practical Method to Predict Physical Stability of Amorphous Solid Dispersions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To predict the crystallization time of amorphous solid dispersions by controlling the combined effect of temperature and moisture content.

Methods

The authors exposed amorphous samples of spray-dried API and Hydroxypropylmethylcellulose Phtalate to various temperature and humidity conditions below and above the glass transition temperature (Tg) until crystallization of the API was observed. The crystallization of API was detected by XRPD, while the T g and the water absorption by the amorphous dispersion are quantified by mDSC and water sorption analysis.

Results

Extrapolation of the data obtained at a temperature above T g to conditions below T g gives only a qualitative trend. By contrast, in conditions below T g the logarithm of onset of crystallization time was shown to vary linearly with the T g /T ratio. A statistical analysis shows that the data obtained in the highest temperature/humidity conditions, for which the onset of crystallization is below 3 months, can be extrapolated over 15 months.

Conclusions

The proposed methodology can be used as a stress program to predict long-term stability from a relatively short observation period and to design appropriate temperature and humidity conditions for long-term storage to prevent crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

REFERENCES

  1. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75.

    Article  PubMed  CAS  Google Scholar 

  2. Chiou WL, Riegelman S. Preparation and dissolution characteristics of several fast-release solid dispersions of Griseofulvin. J Pharm Sci. 1969;58(12):1505–10.

    Article  PubMed  CAS  Google Scholar 

  3. Simonelli AP, Mehta SC, Higughi WI. Dissolution rates of high energy PVP-sulfatiazole coprecipitates. J Pharm Sci. 1969;58(5):538–49.

    Article  PubMed  CAS  Google Scholar 

  4. Chowdary KPR, Babu KVVS. Dissolution, bioavailability and ulcerogenic studies on solid dispersions of Indomethacin in water soluble cellulose polymers. Drug Dev Ind Pharm. 1994;20:799–813.

    Article  CAS  Google Scholar 

  5. Zerrouk N, Mennini N, Maestrelli F, Chemtob C, Mura P. Comparison of the effect of chitosan and polyvinylpyrrolidone on dissolution properties and analgesic effect of naproxen. Eur J Pharm Biopharm. 2004;57:93–9.

    Article  PubMed  CAS  Google Scholar 

  6. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86:1–12.

    Article  PubMed  CAS  Google Scholar 

  7. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.

    Article  PubMed  CAS  Google Scholar 

  8. Craig DQM, Royall PG, Kett VL, Hopton ML. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drug and freeze dried systems. Int J Pharm. 1999;179:179–207.

    Article  PubMed  CAS  Google Scholar 

  9. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv. 2001;48:27–42.

    Article  CAS  Google Scholar 

  10. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Sci. 2000;50:47–60.

    CAS  Google Scholar 

  11. Willart JF, Descamps M. Solid state amorphization of pharmaceuticals. Mol Pharm. 2008;5(6):905–20.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshioka S, Aso Y. Correlations between molecular mobility and chemical stability during storage of amorphous pharmaceuticals. J Pharm Sci. 2007;96(5):960–80.

    Article  PubMed  CAS  Google Scholar 

  13. Bhugra C, Rambhatla S, Bakri A, Duddu SP, Miller DP, Pikal MJ, et al. Prediction of the onset of crystallization of amorphous sucrose below Tg from correlations with mobility. J Pharm Sci. 2007;96(5):1258–69.

    Article  PubMed  CAS  Google Scholar 

  14. Alie J, Menegotto J, Cardon P, Duplaa H, Caron A, Lacabanne C, et al. Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance. J Pharm Sci. 2004;93(1):218–33.

    Article  PubMed  CAS  Google Scholar 

  15. Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci. 2006;95(12):2692–705.

    Article  PubMed  CAS  Google Scholar 

  16. Serajuddin ATM. Solid Dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–65.

    Article  PubMed  CAS  Google Scholar 

  17. Aso Y, Yoshioka S, Kojima S. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in PVP solid dispersions. J Pharm Sci. 2004;93(2):384–90.

    Article  PubMed  CAS  Google Scholar 

  18. Menegotto J, Alié J, Mayoux C, Bauer M. TSC and DDS. In: Zakrewski A, Zakrewski M, editors. Solid state characterization of pharmaceuticals; 2006.

  19. Carpentier L, Decressain R, De Gusseme A, Neves C, Descamps M. Molecular mobility in glass forming fananserine: a dielectric, NMR, and TMDSC investigation. Pharm Res. 2006;23(4):798–805.

    Article  PubMed  CAS  Google Scholar 

  20. Aso Y, Yoshioka S, Kojima S. Explanation of the crystallization rate of amorphous nifedipine and phenobarbital from their molecular mobility as measured by 13C NMR time and the relaxation time obtained from the heating rate dependence of the Tg. J Pharm Sci. 2001;90(6):798–806.

    Article  PubMed  CAS  Google Scholar 

  21. Bhugra C, Shmeis R, Krill ST, Pikal MJ. Prediction of the Onset of Crystallization from experimental relaxation times I-correlation of molecular mobility from T > Tg to T < Tg. Pharm Res. 2006;36(10):2277–90.

    Article  Google Scholar 

  22. Miyazaki T, Yoshioka S, Aso Y, Kawanishi T. Crystallization rate of amorphous nifedipine analogues unrelated to the Tg. Int J Pharm. 2007;336:191–5.

    Article  PubMed  CAS  Google Scholar 

  23. Schmitt E, Davis CW, Long ST. Moisture-dependent crystallization of amorphous lamotrigine mesylate. J Pharm Sci. 1996;85(11):1215–9.

    Article  PubMed  CAS  Google Scholar 

  24. Andronis V, Zografi G. Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J Non-cryst Sol. 2000;271(3):236–48.

    Article  CAS  Google Scholar 

  25. Zanotto ED, James PF. A theoretical and experimental assessment of systematic errors in nucleation experiments. J Non-cryst Sol. 1990;124(1):86–90.

    Article  Google Scholar 

  26. Yang J, Grey K, Doney J. An improved kinetics approach to describe the physical stability of amorphous dispersions. Int J Pharm. 2010;384:24–31.

    Article  PubMed  CAS  Google Scholar 

  27. Yoshioka M, Hancock BC, Zografi G. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci. 1994;83(12):1700–5.

    Article  PubMed  CAS  Google Scholar 

  28. Khankari RK, Law D, Grant DJW. Determination of water content in pharmaceutical hydrates by differential scanning Calorimetry. Int J Pharmaceutics. 1992;82:117–21.

    Article  CAS  Google Scholar 

  29. Tajber L, Corrigan OI, Healy AM. Physicochemical evaluation of PVP-thiazide diuretic interactions in co-spray-dried composites – analysis of glass transition composition relationships. Eur J Pharm Sci. 2005;24:553–63.

    Article  PubMed  CAS  Google Scholar 

  30. Nair R, Nyamweya N, Gönen S, Martinez-Miranda LJ, Hoag SW. Influence of various drugs on the glass transition temperature of PVP: a thermodynamic and spectroscopic investigation. Int J Pharm. 2001;225:83–96

    Google Scholar 

  31. Khougaz K, Clas S-D. Crystallization Inhibition in solid dispersions of MK-0591 and PVP polymers. J Pharm Sci. 2000;89(10):1325–34.

    Article  PubMed  CAS  Google Scholar 

  32. Angell CA. Formation of glasses from liquids and biopolymers. Science. 1995;267(5206):1924–35.

    Article  PubMed  CAS  Google Scholar 

  33. Hodge IM. Enthalpy relaxation and recovery in amorphous materials. J Non-cryst Sol. 1994;169(3):211–66.

    Article  CAS  Google Scholar 

  34. Andronis V, Zografi G. The molecular mobility of supercooled amorhpous indomethacin as a function of temperature and RH. Pharm Res. 1998;15(6):835–42.

    Article  PubMed  CAS  Google Scholar 

  35. Hodge IM. Effects of annealing and prior history of enthalpy relaxation in glassy polymers. 6. Adams-Gibbs formulation of non-linearity. Macromolecules. 1987;20:2897–908.

    Article  CAS  Google Scholar 

  36. Shalaev EY, Zografi G. How does residual water affect the solid-state degradation of drugs in the amorphous state. J Pharm Sci. 1996;85:1137–41.

    Article  PubMed  CAS  Google Scholar 

  37. Shamblin SL, Tang X, Chang L, Hancock BC, Pikal MJ. Characterization of the time scales of molecular motion in pharmaceutical important glasses. J Phys Chem B. 1999;103:4113–21.

    Article  CAS  Google Scholar 

  38. Bhugra C, Pikal MJ. Role of Thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci. 2008;97(4):1329–49.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

We acknowledge Marc-Antoine Perrin, Fabrice Tamagnan, Nancy Midoux, Cécile Bonvoisin, Lionel Gerbeau for their contribution to the SA project. We acknowledge Jean Alié, Jérome Menegotto, Marc Descamps, Rama Shmeis and Sophie-Dorothée Clas for their fruitful remarks and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Greco.

Appendix: Statistical Calculations

Appendix: Statistical Calculations

Data Pooling

The first question was: can we consider that the data obtained at 75, 80 and 100% RH is a unique population? A preliminary Analysis Of Covariance (ANCOVA) was conducted to test whether the data of the different %RH storage conditions could be pooled.

The table of ANCOVA (Table X) shows that the points (T g /T, log 10(tmc)) for the different humidity conditions can be considered from a statistical point of view as the same population. The first important conclusion, is that the %RH impact should be taken into account only once in the calculation of T g .

Table X Table of ANCOVA: Type 3 Tests of Fixed Effects

As illustration, we show the 3 different linear regressions for the different %RH on the same graph, see Fig. 14.

Fig. 14
figure 14

Linear regression of the tm as a function of T g /T.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greco, S., Authelin, JR., Leveder, C. et al. A Practical Method to Predict Physical Stability of Amorphous Solid Dispersions. Pharm Res 29, 2792–2805 (2012). https://doi.org/10.1007/s11095-012-0717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0717-5

KEY WORDS

Navigation