Pharmaceutical Research

, Volume 29, Issue 10, pp 2792–2805 | Cite as

A Practical Method to Predict Physical Stability of Amorphous Solid Dispersions

  • Stéphanie Greco
  • Jean-René Authelin
  • Caroline Leveder
  • Audrey Segalini
Research Paper



To predict the crystallization time of amorphous solid dispersions by controlling the combined effect of temperature and moisture content.


The authors exposed amorphous samples of spray-dried API and Hydroxypropylmethylcellulose Phtalate to various temperature and humidity conditions below and above the glass transition temperature (Tg) until crystallization of the API was observed. The crystallization of API was detected by XRPD, while the T g and the water absorption by the amorphous dispersion are quantified by mDSC and water sorption analysis.


Extrapolation of the data obtained at a temperature above T g to conditions below T g gives only a qualitative trend. By contrast, in conditions below T g the logarithm of onset of crystallization time was shown to vary linearly with the T g /T ratio. A statistical analysis shows that the data obtained in the highest temperature/humidity conditions, for which the onset of crystallization is below 3 months, can be extrapolated over 15 months.


The proposed methodology can be used as a stress program to predict long-term stability from a relatively short observation period and to design appropriate temperature and humidity conditions for long-term storage to prevent crystallization.


amorphous crystallization onset glass transition temperature moisture physical stability 



We acknowledge Marc-Antoine Perrin, Fabrice Tamagnan, Nancy Midoux, Cécile Bonvoisin, Lionel Gerbeau for their contribution to the SA project. We acknowledge Jean Alié, Jérome Menegotto, Marc Descamps, Rama Shmeis and Sophie-Dorothée Clas for their fruitful remarks and discussions.


  1. 1.
    Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75.PubMedCrossRefGoogle Scholar
  2. 2.
    Chiou WL, Riegelman S. Preparation and dissolution characteristics of several fast-release solid dispersions of Griseofulvin. J Pharm Sci. 1969;58(12):1505–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Simonelli AP, Mehta SC, Higughi WI. Dissolution rates of high energy PVP-sulfatiazole coprecipitates. J Pharm Sci. 1969;58(5):538–49.PubMedCrossRefGoogle Scholar
  4. 4.
    Chowdary KPR, Babu KVVS. Dissolution, bioavailability and ulcerogenic studies on solid dispersions of Indomethacin in water soluble cellulose polymers. Drug Dev Ind Pharm. 1994;20:799–813.CrossRefGoogle Scholar
  5. 5.
    Zerrouk N, Mennini N, Maestrelli F, Chemtob C, Mura P. Comparison of the effect of chitosan and polyvinylpyrrolidone on dissolution properties and analgesic effect of naproxen. Eur J Pharm Biopharm. 2004;57:93–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86:1–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.PubMedCrossRefGoogle Scholar
  8. 8.
    Craig DQM, Royall PG, Kett VL, Hopton ML. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drug and freeze dried systems. Int J Pharm. 1999;179:179–207.PubMedCrossRefGoogle Scholar
  9. 9.
    Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv. 2001;48:27–42.CrossRefGoogle Scholar
  10. 10.
    Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Sci. 2000;50:47–60.Google Scholar
  11. 11.
    Willart JF, Descamps M. Solid state amorphization of pharmaceuticals. Mol Pharm. 2008;5(6):905–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Yoshioka S, Aso Y. Correlations between molecular mobility and chemical stability during storage of amorphous pharmaceuticals. J Pharm Sci. 2007;96(5):960–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Bhugra C, Rambhatla S, Bakri A, Duddu SP, Miller DP, Pikal MJ, et al. Prediction of the onset of crystallization of amorphous sucrose below Tg from correlations with mobility. J Pharm Sci. 2007;96(5):1258–69.PubMedCrossRefGoogle Scholar
  14. 14.
    Alie J, Menegotto J, Cardon P, Duplaa H, Caron A, Lacabanne C, et al. Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance. J Pharm Sci. 2004;93(1):218–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci. 2006;95(12):2692–705.PubMedCrossRefGoogle Scholar
  16. 16.
    Serajuddin ATM. Solid Dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–65.PubMedCrossRefGoogle Scholar
  17. 17.
    Aso Y, Yoshioka S, Kojima S. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in PVP solid dispersions. J Pharm Sci. 2004;93(2):384–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Menegotto J, Alié J, Mayoux C, Bauer M. TSC and DDS. In: Zakrewski A, Zakrewski M, editors. Solid state characterization of pharmaceuticals; 2006.Google Scholar
  19. 19.
    Carpentier L, Decressain R, De Gusseme A, Neves C, Descamps M. Molecular mobility in glass forming fananserine: a dielectric, NMR, and TMDSC investigation. Pharm Res. 2006;23(4):798–805.PubMedCrossRefGoogle Scholar
  20. 20.
    Aso Y, Yoshioka S, Kojima S. Explanation of the crystallization rate of amorphous nifedipine and phenobarbital from their molecular mobility as measured by 13C NMR time and the relaxation time obtained from the heating rate dependence of the Tg. J Pharm Sci. 2001;90(6):798–806.PubMedCrossRefGoogle Scholar
  21. 21.
    Bhugra C, Shmeis R, Krill ST, Pikal MJ. Prediction of the Onset of Crystallization from experimental relaxation times I-correlation of molecular mobility from T > Tg to T < Tg. Pharm Res. 2006;36(10):2277–90.CrossRefGoogle Scholar
  22. 22.
    Miyazaki T, Yoshioka S, Aso Y, Kawanishi T. Crystallization rate of amorphous nifedipine analogues unrelated to the Tg. Int J Pharm. 2007;336:191–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Schmitt E, Davis CW, Long ST. Moisture-dependent crystallization of amorphous lamotrigine mesylate. J Pharm Sci. 1996;85(11):1215–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Andronis V, Zografi G. Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J Non-cryst Sol. 2000;271(3):236–48.CrossRefGoogle Scholar
  25. 25.
    Zanotto ED, James PF. A theoretical and experimental assessment of systematic errors in nucleation experiments. J Non-cryst Sol. 1990;124(1):86–90.CrossRefGoogle Scholar
  26. 26.
    Yang J, Grey K, Doney J. An improved kinetics approach to describe the physical stability of amorphous dispersions. Int J Pharm. 2010;384:24–31.PubMedCrossRefGoogle Scholar
  27. 27.
    Yoshioka M, Hancock BC, Zografi G. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci. 1994;83(12):1700–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Khankari RK, Law D, Grant DJW. Determination of water content in pharmaceutical hydrates by differential scanning Calorimetry. Int J Pharmaceutics. 1992;82:117–21.CrossRefGoogle Scholar
  29. 29.
    Tajber L, Corrigan OI, Healy AM. Physicochemical evaluation of PVP-thiazide diuretic interactions in co-spray-dried composites – analysis of glass transition composition relationships. Eur J Pharm Sci. 2005;24:553–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Nair R, Nyamweya N, Gönen S, Martinez-Miranda LJ, Hoag SW. Influence of various drugs on the glass transition temperature of PVP: a thermodynamic and spectroscopic investigation. Int J Pharm. 2001;225:83–96Google Scholar
  31. 31.
    Khougaz K, Clas S-D. Crystallization Inhibition in solid dispersions of MK-0591 and PVP polymers. J Pharm Sci. 2000;89(10):1325–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Angell CA. Formation of glasses from liquids and biopolymers. Science. 1995;267(5206):1924–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Hodge IM. Enthalpy relaxation and recovery in amorphous materials. J Non-cryst Sol. 1994;169(3):211–66.CrossRefGoogle Scholar
  34. 34.
    Andronis V, Zografi G. The molecular mobility of supercooled amorhpous indomethacin as a function of temperature and RH. Pharm Res. 1998;15(6):835–42.PubMedCrossRefGoogle Scholar
  35. 35.
    Hodge IM. Effects of annealing and prior history of enthalpy relaxation in glassy polymers. 6. Adams-Gibbs formulation of non-linearity. Macromolecules. 1987;20:2897–908.CrossRefGoogle Scholar
  36. 36.
    Shalaev EY, Zografi G. How does residual water affect the solid-state degradation of drugs in the amorphous state. J Pharm Sci. 1996;85:1137–41.PubMedCrossRefGoogle Scholar
  37. 37.
    Shamblin SL, Tang X, Chang L, Hancock BC, Pikal MJ. Characterization of the time scales of molecular motion in pharmaceutical important glasses. J Phys Chem B. 1999;103:4113–21.CrossRefGoogle Scholar
  38. 38.
    Bhugra C, Pikal MJ. Role of Thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci. 2008;97(4):1329–49.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Stéphanie Greco
    • 1
  • Jean-René Authelin
    • 1
  • Caroline Leveder
    • 1
  • Audrey Segalini
    • 1
  1. 1.SanofiVitry-sur-SeineFrance

Personalised recommendations