Skip to main content

Advertisement

Log in

Plasma Activated Organic Fertilizer

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Improved utilization of organic waste for fertilizer has significant worldwide economic and ecological potential and the use of plasma can help unlock this potential. Organic waste that are used as fertilizer includes animal waste (manure and urine), human sewage, food waste and biogas digestate. Air plasma treatment of aqueous solutions of organic fertilizer (plasma activated organic fertilizer, or PAOF) has multiple advantages such as reduction or elimination of atmospheric emission of volatile organic carbon (VOC) compounds, CH\({_4}\) and NH\({_3}\). Although the emission of N\(_2\mathrm{O}\) from the fertilized soil may be enhanced by PAOF, we surmise that N\(_2\mathrm{O}\) emission at large is reduced because the losses of reactive nitrogen from the agro-ecosystem (which cause N\(_2\mathrm{O}\) emissions elsewhere) are significantly reduced. In addition, PAOF will improve the commercial value of fertilizer that can be made from organic waste. This includes altering both the quantity and chemical form of N contained in the organic fertilizer, as well as odor reduction. PAOF appears to function using chemical reactivity similar to well-studied natural antimicrobial processes, resulting in significant antibacterial effects in treated waste. The commercial viability of PAOF depends on numerous factors, the most important of which are the energy efficiency and capital costs associated with the plasma process and associated processing equipment; the cost of electricity; and the nature and extent of government regulations regarding pollution from organic waste and all types of fertilizer. We estimate that if the total cost of plasma production of reactive nitrogen is below about €2/kg N–€3/kg N, the process will be economically viable in the absence of penalties or subsidies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schlter O, Ehlbeck J, Hertel C, Habermeyer M, Roth A, Engel K-H, Holzhauser T, Knorr D, Eisenbrand G (2013) Opinion on the use of plasma processes for treatment of foods. Mol Nutr Food Res 57(5):920–927

    Article  CAS  Google Scholar 

  2. Ohta T (2016) Plasma in agriculture. In: Misra NN, Schlüter O, Cullen PJ (eds) Cold plasma in food and agriculture. Elsevier, Amsterdam, pp 205–221

    Chapter  Google Scholar 

  3. Puač N, Gherardi M, Shiratani M (2018) Plasma agriculture: a rapidly emerging field. Plasma Processes Polym 15(2):1700174

    Article  CAS  Google Scholar 

  4. Pankaj SK, Bueno-Ferrer C, Misra NN, Milosavljević V, O’Donnell CP, Bourke P, Keener KM, Cullen PJ (2014) Applications of cold plasma technology in food packaging. Trends Food Sci Technol 35(1):5–17

    Article  CAS  Google Scholar 

  5. Pankaj SK, Keener KM (2018) Cold plasma processing of fruit juices. In: Rajauria G, Tiwari BK (eds) Fruit juices. Elsevier, pp 529–537

  6. Shaw A, Shama G, Iza F (2015) Emerging applications of low temperature gas plasmas in the food industry. Biointerphases 10(2):029402

    Article  CAS  PubMed  Google Scholar 

  7. Noriega E, Shama G, Laca A, Daz M, Kong MG (2011) Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiol 28(7):1293–1300

    Article  CAS  PubMed  Google Scholar 

  8. Frhling A, Durek J, Schnabel U, Ehlbeck J, Bolling J, Schlter O (2012) Indirect plasma treatment of fresh pork: decontamination efficiency and effects on quality attributes. Innov Food Sci Emerg Technol 16:381–390

    Article  CAS  Google Scholar 

  9. Fernndez A, Thompson A (2012) The inactivation of Salmonella by cold atmospheric plasma treatment. Food Res Int 45(2):678–684

    Article  Google Scholar 

  10. Yong HI, Park J, Kim H-J, Jung S, Park S, Lee HJ, Choe W, Jo C (2018) An innovative curing process with plasma-treated water for production of loin ham and for its quality and safety. Plasma Process Polym 15(2):1700050

    Article  CAS  Google Scholar 

  11. Wang RX, Nian WF, Wu HY, Feng HQ, Zhang K, Zhang J, Zhu WD, Becker KH, Fang J (2012) Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation. Eur Phys J D 66(10):276

    Article  CAS  Google Scholar 

  12. Tappi S, Berardinelli A, Ragni L, Dalla Rosa M, Guarnieri A, Rocculi P (2014) Atmospheric gas plasma treatment of fresh-cut apples. Innov Food Sci Emerg Technol 21:114–122

    Article  CAS  Google Scholar 

  13. Misra NN, Patil S, Moiseev T, Bourke P, Mosnier JP, Keener KM, Cullen PJ (2014) In-package atmospheric pressure cold plasma treatment of strawberries. J Food Eng 125:131–138

    Article  CAS  Google Scholar 

  14. Baier M, Foerster J, Schnabel U, Knorr D, Ehlbeck J, Herppich WB, Schlter O (2013) Direct non-thermal plasma treatment for the sanitation of fresh corn salad leaves: evaluation of physical and physiological effects and antimicrobial efficacy. Postharvest Biol Technol 84:81–87

    Article  CAS  Google Scholar 

  15. Ponraj SB, Sharp JA, Kanwar JR, Sinclair AJ, Kviz L, Nicholas KR, Dai XJ (2017) Argon gas plasma to decontaminate and extend shelf life of milk. Plasma Processes Polym 14(11):1600242

    Article  CAS  Google Scholar 

  16. Yannam SK, Estifaee P, Rogers S, Thagard SM (2018) Application of high voltage electrical discharge plasma for the inactivation of Escherichia coli ATCC 700891 in tangerine juice. LWT 90:180–185

    Article  CAS  Google Scholar 

  17. Dobrin D, Magureanu M, Mandache NB, Ionita M-D (2015) The effect of non-thermal plasma treatment on wheat germination and early growth. Innov Food Sci Emerg Technol 29:255–260

    Article  CAS  Google Scholar 

  18. Zhou R, Zhou R, Zhang X, Zhuang J, Yang S, Bazaka K, Ostrikov KK (2016) Effects of atmospheric-pressure N2, He, Air, and O2 microplasmas on mung bean seed germination and seedling growth. Sci Rep 6(1):32603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sarinont T, Amano T, Koga K, Shiratani M, Hayashi N (2015) Multigeneration effects of plasma irradiation to seeds of arabidopsis thaliana and Zinnia on their growth. In: MRS Proceedings, p 1723

  20. Ji S-H, Choi K-H, Pengkit A, Im JS, Kim JS, Kim YH, Park Y, Hong EJ, Jung S, Choi E-H, Park G (2016) Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach. Arch Biochem Biophys 605:117–128

    Article  CAS  PubMed  Google Scholar 

  21. Koga K, Thapanut S, Amano T, Seo H, Itagaki N, Hayashi N, Shiratani M (2016) Simple method of improving harvest by nonthermal air plasma irradiation of seeds of Arabidopsis thaliana (L.). Appl Phys Express 9(1):016201

    Article  CAS  Google Scholar 

  22. Randeniya LK, de Groot GJJB (2015) Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: a review: non-thermal plasma treatment of agricultural seeds. Plasma Process Polym 12(7):608–623

    Article  CAS  Google Scholar 

  23. Panngom K, Lee SH, Park DH, Sim GB, Kim YH, Uhm HS, Park G, Choi EH (2014) Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host. PLoS ONE 9(6):e99300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siddique SS, Hardy GESJ, Bayliss KL (2018) Cold plasma: a potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol 67(5):1011–1021

    Article  Google Scholar 

  25. Stryczewska HD, Ebihara K, Takayama M, Gyoutoku Y, Tachibana M (2005) Non-thermal plasma-based technology for soil treatment. Plasma Process Polym 2(3):238–245

    Article  CAS  Google Scholar 

  26. Mitsugi F, Abiru T, Ikegami T, Ebihara K, Aoqui S-I, Nagahama K (2016) Influence of ozone generated by surface barrier discharge on nematode and plant growth. IEEE Trans Plasma Sci 44(12):3071–3076

    Article  CAS  Google Scholar 

  27. Malik MA, Ghaffar A, Malik SA (2001) Water purification by electrical discharges. Plasma Sour Sci Technol 10(1):82–91

    Article  CAS  Google Scholar 

  28. Burlica R, Kirkpatrick MJ, Finney WC, Clark RJ, Locke BR (2004) Organic dye removal from aqueous solution by glidarc discharges. J Electrost 62(4):309–321

    Article  CAS  Google Scholar 

  29. Jiang G, Yuan Z (2013) Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide. J Hazard Mater 250–251:91–98

    Article  CAS  PubMed  Google Scholar 

  30. Merouani DR, Abdelmalek F, Taleb F, Martel M, Semmoud A, Addou A (2015) Plasma treatment by gliding arc discharge of dyes/dye mixtures in the presence of inorganic salts. Arab J Chem 8(2):155–163

    Article  CAS  Google Scholar 

  31. Magureanu M, Mandache NB, Parvulescu VI (2015) Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Res 81:124–136

    Article  CAS  PubMed  Google Scholar 

  32. Utsumi F, Kajiyama H, Nakamura K, Tanaka H, Mizuno M, Ishikawa K, Kondo H, Kano H, Hori M, Kikkawa F (2013) Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS ONE 8(12):e81576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kurake N, Tanaka H, Ishikawa K, Kondo T, Sekine M, Nakamura K, Kajiyama H, Kikkawa F, Mizuno M, Hori M (2016) Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch Biochem Biophys 605:102–108

    Article  CAS  PubMed  Google Scholar 

  34. Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, Hofman-Caris RCHM, Maric D, Reid JP, Ceriani E, Fernandez Rivas D, Foster JE, Garrick SC, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts EC, Pawlat J, Lj Petrovic Z, Pflieger R, Reuter S, Schram DC, Schrter S, Shiraiwa M, Tarabov B, Tsai PA, Verlet JRR, von Woedtke T, Wilson KR, Yasui K, Zvereva G (2016) Plasma-liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25(5):053002

    Article  CAS  Google Scholar 

  35. Lukes P, Dolezalova E, Sisrova I, Clupek M (2014) Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of \(\text{ H }_{2}\text{ O } _{2}\) and \(\text{ HNO }_{2}\). Plasma Sources Sci Technol 23(1):015019

    Article  CAS  Google Scholar 

  36. Doubla A, Abdelmalek F, Khe LIFA K, ADDOU A, BRISSET JL (2003) Post-discharge plasma-chemical oxidation of Iron(II) complexes. J Appl Electrochem 33:73–77

    Article  CAS  Google Scholar 

  37. Oehmigen K, Hhnel M, Brandenburg R, Wilke C, Weltmann K-D, von Woedtke T (2010) The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process Polym 7(3–4):250–257

    Article  CAS  Google Scholar 

  38. Oehmigen K, Winter J, Hhnel M, Wilke C, Brandenburg R, Weltmann K-D, von Woedtke T (2011) Estimation of possible mechanisms of escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Process Polym 8(10):904–913

    Article  CAS  Google Scholar 

  39. Naitali M, Kamgang-Youbi G, Herry J-M, Bellon-Fontaine M-N, Brisset J-L (2010) Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl Environ Microbiol 76(22):7662–7664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Traylor MJ, Pavlovich MJ, Karim S, Hait P, Sakiyama Y, Clark DS, Graves DB (2011) Long-term antibacterial efficacy of air plasma-activated water. J Phys D Appl Phys 44(47):472001

    Article  CAS  Google Scholar 

  41. Machala Z, Tarabova B, Hensel K, Spetlikova E, Sikurova L, Lukes P (2013) Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects: formation of ROS/RNS in water sprayed through spark in air. Plasma Process Polym 10(7):649–659

    Article  CAS  Google Scholar 

  42. Jablonowski H, von Woedtke T (2015) Research on plasma medicine-relevant plasma-liquid interaction: What happened in the past five years? Clin Plasma Med 3(2):42–52

    Article  Google Scholar 

  43. Brisset J-L, Pawlat J (2016) Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: discharge, post-discharge and plasma activated water. Plasma Chem Plasma Process 36(2):355–381

    Article  CAS  Google Scholar 

  44. Peng L, Boehm D, Bourke P, Cullen PJ (2017) Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Process Polym 14(8):1600207

    Article  CAS  Google Scholar 

  45. Julk J, Hujacov A, Scholtz V, Khun J, Holada K (2018) Contribution to the chemistry of plasma-activated water. Plasma Phys Rep 44(1):125–136

    Article  Google Scholar 

  46. Thirumdas R, Kothakota A, Annapure U, Siliveru K, Blundell R, Gatt R, Valdramidis VP (2018) Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci Technol 77:21–31

    Article  CAS  Google Scholar 

  47. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424

    Article  CAS  PubMed  Google Scholar 

  48. Koppenol WH (2001) 100 Years of peroxynitrite chemistry and 11 years of peroxynitrite biochemistry. Redox Rep 6(6):339–341

    Article  CAS  PubMed  Google Scholar 

  49. Molina C, Kissner R, Koppenol WH (2013) Decomposition kinetics of peroxynitrite: influence of pH and buffer. Dalton Trans 42(27):9898

    Article  CAS  PubMed  Google Scholar 

  50. Castellani AG, Niven CF Jr (1955) Factors affecting the bacteriostatic action of sodium nitrite. Appl Microbiol 3(3):154–159

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiang G, Gutierrez O, Yuan Z (2011) The strong biocidal effect of free nitrous acid on anaerobic sewer biofilms. Water Res 45(12):3735–3743

    Article  CAS  PubMed  Google Scholar 

  52. Weller R, Price RJ, Ormerod AD, Benjamin N, Leifert C (2001) Antimicrobial effect of acidified nitrite on dermatophyte fungi, Candida and bacterial skin pathogens. J Appl Microbiol 90(4):648–652

    Article  CAS  PubMed  Google Scholar 

  53. Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7(2):156–167

    Article  CAS  PubMed  Google Scholar 

  54. Lobachev VL, Rudakov ES (2006) The chemistry of peroxynitrite. Reaction mechanisms and kinetics. Russian Chem Rev 75(5):375–396

    Article  CAS  Google Scholar 

  55. Shen J, Tian Y, Li Y, Ma R, Zhang Q, Zhang J, Fang J (2016) Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci Rep 6(1):28505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kissner R, Koppenol WH (2002) Product distribution of peroxynitrite decay as a function of pH, temperature, and concentration. J Am Chem Soc 124(2):234–239

    Article  CAS  PubMed  Google Scholar 

  57. Ingels R, Graves DB (2015) Improving the efficiency of organic fertilizer and nitrogen use via air plasma and distributed renewable energy. Plasma Med 5(2–4):257–270

    Article  Google Scholar 

  58. Smil V (2001) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT Press, Cambridge

    Google Scholar 

  59. Smil V (2002) Nitrogen and food production: proteins for human diets. AMBIO: A J Hum Environ 31(2):126–131

    Article  Google Scholar 

  60. Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sorlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347(6223):1259855–1259855

    Article  CAS  PubMed  Google Scholar 

  61. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Jack Cosby B (2003) The nitrogen cascade. BioScience 53(4):341

    Article  Google Scholar 

  62. Sutton MA (ed) Our nutrient world: the challenge to produce more food and energy with less pollution ; [global overview on nutrient management]. Centre for Ecology & Hydrology, Edinburgh, 2013. OCLC: 854698050

  63. Fangueiro D, Hjorth M, Gioelli F (2015) Acidification of animal slurry: a review. J Environ Manag 149:46–56

    Article  CAS  Google Scholar 

  64. Cherkasov N, Ibhadon AO, Fitzpatrick P (2015) A review of the existing and alternative methods for greener nitrogen fixation. Chem Eng Process Process Intensif 90:24–33

    Article  CAS  Google Scholar 

  65. Wang W, Patil B, Heijkers S, Hessel V, Bogaerts A (2017) Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling. ChemSusChem 10(10):2145–2157

    Article  CAS  PubMed  Google Scholar 

  66. Birkeland KR (1906) On the oxidation of atmospheric nitrogen in electric arcs. Trans Faraday Soc 2(December):98

    Article  CAS  Google Scholar 

  67. Bakken LR, Frostegrd SA (2017) Sources and sinks for N \(_{2}\) O, can microbiologist help to mitigate N \(_{2}\) O emissions?: Sources and sinks for N \(_{2}\) O. Environ Microbiol 19(12):4801–4805

    Article  CAS  PubMed  Google Scholar 

  68. Hink L, Nicol GW, Prosser JI (2017) Archaea produce lower yields of \(\text{ N }_{2}\text{ O }\) than bacteria during aerobic ammonia oxidation in soil: \(\text{ N }_{2}\text{ O }\) production by soil ammonia oxidisers. Environ Microbiol 19(12):4829–4837

    Article  CAS  PubMed  Google Scholar 

  69. Liu B, Frostegard A, Bakken LR (2014) Impaired reduction of N2o to N2 in acid soils is due to a posttranscriptional interference with the expression of nosZ. MBio 5(3):e01383–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Veltoff GL, Oenema O (1993) Nitrous oxide flux from nitric acid treated cattle slurry applied to grassland under semi-controlled conditions. Neth J Agric Sci 41:81–93

    Google Scholar 

  71. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2o release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 7(4):11191–11205

    Article  Google Scholar 

  72. anon (2017) Yara Fertilizer industry handbook. https://urldefense.proofpoint.com/v2/url?u=http-3A__www.yara.com_investor-5Frelations_reports-5Fpresentations_index.aspx&d=DwIFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=eIE3I0XpWWrhwtq0qhyjYYVSdRw0yjTwnJuvumozR6g&m=GfgCCECJUI6-LxZF04G0PrIx9qk8g0PPIcnBfB62KI4&s=omxenioHroHyVYf_UPuchRsD1lRFUv1s-826PF9NZrQ&e=

  73. Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45(26):263001

    Article  CAS  Google Scholar 

  74. von Woedtke T, Metelmann H-R, Weltmann K-D (2014) Clinical plasma medicine: state and perspectives of in vivo application of cold atmospheric plasma: clinical plasma medicine: state and perspectives of in vivo application of cold atmospheric plasma. Contrib Plasma Phys 54(2):104–117

    Article  CAS  Google Scholar 

  75. Misra NN, Schlüter O, Cullen PJ (eds) (2016) Plasma in food and agriculture. In: Cold plasma in food and agriculture. Elsevier, pp 1–16

Download references

Acknowledgements

DBG gratefully acknowledges partial support from US Department of Energy OFES Grant DE-SC0001934 and US National Science Foundation Grant 1606062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Graves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graves, D.B., Bakken, L.B., Jensen, M.B. et al. Plasma Activated Organic Fertilizer. Plasma Chem Plasma Process 39, 1–19 (2019). https://doi.org/10.1007/s11090-018-9944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9944-9

Keywords

Navigation