Skip to main content
Log in

Electric Arc Fluctuations in DC Plasma Spray Torch

  • Review Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Direct current plasma torches for plasma spraying applications generate electric arc instabilities. The resulting fluctuations of input electrical power hamper a proper control of heat and momentum transfers to materials for coating deposition. This paper gives an overview of major issues about arc instabilities in conventional DC plasma torches. Evidences of arc fluctuations and their consequences on plasma properties and on material treatments are illustrated. Driving forces applied to the arc creating its motion are described and emphasis is put on the restrike mode that depends on the arc reattachment and the boundary layer properties around the arc column. Besides the arc root shown as a key region of instability, the Helmholtz oscillation is also described and accounts for the whole plasma torch domain that can generate pressure fluctuations coupled with voltage ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. John RR, Bade WL (1961) Recent advances in electric arc plasmas generation technology. ARS J 31:4–17

    Article  Google Scholar 

  2. Pfender E (1978) Electric arcs and arc gas heaters. In: Hirsh MN, Oskam HJ (eds) Gaseous electronics: electrical discharges, vol 1. Academic Press, New York, pp 291–398

    Chapter  Google Scholar 

  3. Zhukov MF, Zasypkin IM (2007) Thermal plasma torches. Cambridge International Science Publishing, Cambridge

    Google Scholar 

  4. Fauchais PL, Heberlein JVR, Boulos MI (2014) Thermal spray fundamentals—from power to part. Springer, Berlin

    Book  Google Scholar 

  5. Giannini G, Ducati A (1960) Plasma stream apparatus and methods US patent no. 2922869

  6. Neininger F (1918) Elektrisches Verfahren und Vorrichtung zum Metallspritzen Swiss Patent no. 80098

  7. Siegmann S, Christoph A (2013) 100 years of thermal spray: about the inventor Max Ulrich Schoop. Surf Coat Technol 220:3–13

    Article  CAS  Google Scholar 

  8. Fauchais P, Vardelle A (1997) Thermal plasmas. IEEE Trans Plasma Sci 25:1258–1280

    Article  CAS  Google Scholar 

  9. Mostaghimi J, Boulos MI (2015) Thermal plasma sources: how well are they adopted to process needs? Plasma Chem Plasma Process 35:421–436

    Article  CAS  Google Scholar 

  10. Rat V, Coudert JF (2006) A simplified analytical model for DC plasma spray torch: influence of gas properties and experimental conditions. J Phys D Appl Phys 39:4799–4807

    Article  CAS  Google Scholar 

  11. Pfender E, Wutzke SA, Eckert ERG (1964) Arc tunnel facility for the thermal analysis of anode and cathode regimes in an electric arc column, NASA CR 54080

  12. Wutzke SA, Pfender E, Eckert ERG (1967) Study of electric arc behavior with superimposed flow. AIAA J 5:707–714

    Article  Google Scholar 

  13. Wutzke SA, Pfender E, Eckert ERG (1968) Symptomatic behavior of an electric arc with superimposed flow. AIAA J 6:1474–1481

    Article  Google Scholar 

  14. Tateno H, Saito K (1963) Anodic phenomena in nitrogen plasma jet Japan. J Appl Phys 2:192–193

    Article  CAS  Google Scholar 

  15. Jordan GR, King LA (1965) The nature of fluctuations present in DC plasma jets in argon and nitrogen. Br J Appl Phys 16:431–436

    Article  CAS  Google Scholar 

  16. Solonenko OP (2003) Thermal plasma torches and technologies, vol 1. Cambridge International Science Publishing, Cambridge, p 2007

    Google Scholar 

  17. Coudert JF, Planche MP, Fauchais P (1996) Characterization of DC plasma torch voltage fluctuations. Plasma Chem Plasma Process 16:211s–227s

    Article  CAS  Google Scholar 

  18. Maecker H (1955) Plasmaströmungen in Lichtbögen infolge eigenmagnetischer compression. Zietschrift fûr Phys 141:198–216

    Article  Google Scholar 

  19. Maecker H (1955) Plasma streams produced by self-magnetic compression and ist importance fort the mechanism of high current arcs. Appl Sci Res 5:231236

    Google Scholar 

  20. Duan Z, Heberlein JRV (2002) Arc instabilities in plasma spray troch. J. Thermal Spray Technol 11:44–51

    Article  Google Scholar 

  21. Yas′ko OI (1990) Some aspects of the generalization of electric arc characteristics. Pure Appl Chem 62:1817–1827

    Google Scholar 

  22. Hrabovsky M, Konrad M, Kopecky V, Hlina J, Benes J, Vesely E (1997) Motion of anode attachment and fluctuations of plasma jet in DC arc plasma torch. High Temp Mater Process 1:167–178

    Article  Google Scholar 

  23. Dorier JL, Gindrat M, Hollenstein C, Salito A, Loch M, Barbezat G (2001) Time-resolved imaging of anodic arc root behavior during fluctuations of DC plasma spraying torch. IEEE Trans Plasma Sci 29:494–501

    Article  Google Scholar 

  24. Zhao W, Tian K, Tang H, Liu D, Zhang G (2002) Experimental studies on the unsteadiness of atmospheric pressure plasma jet. J Phys D Appl Phys 35:2815–2822

    Article  CAS  Google Scholar 

  25. Tu X, Chéron BG, Yan JH, Yu L, Cen KF (2008) Characterization of an atmospheric double arc argon-nitrogen plasma source. Phys Plasmas 15:053504

    Article  Google Scholar 

  26. Coudert JF, Planche MP, Fauchais P (1995) Velocity measurements of DC plasma jets based on arc root fluctuations. Plasma Chem Plasma Process 15:47–70

    Article  CAS  Google Scholar 

  27. Dorier JL, Hollenstein Ch, Salito A, Loch M, Barbezat G (2001) Characterization and origin of arc fluctuations in a DC F4 plasma torch used for thermal spraying. High Temp Mater Process 5:477–489

    Article  Google Scholar 

  28. Kopecky V, Hrabovsky M (2011) Resonant excitation of boundary layer instability of DC arc plasma jet by current modulation. Plasma Chem Plasma Process 31:827–838

    Article  CAS  Google Scholar 

  29. Hlína J, Gruber J, Šonský J (2014) Suppression of Instabilities in thermal plasma jet by additional arc current modulation. IEEE Trans Plasma Sci 42:2720–2721

    Article  Google Scholar 

  30. Planche MP, Coudert JF, Fauchais P (1998) Velocity measurements for arc jets produced by DC plasma spray torch. Plasma Chem Plasma Process 18:263–283

    Article  CAS  Google Scholar 

  31. Planche MP (1995) Study of the arc fluctuations in DC plasma torches. Application to the arc dynamic and to the jet velocity measurements. University of Limoges (in French)

  32. Hlína J, Šonský J, Gruber J, Cressault Y (2016) Fast tomographic measurements of temperature in an air plasma cutting torch. J Phys D Appl Phys 49:105202

    Article  Google Scholar 

  33. Spores R, Pfender E (1989) Flow structure of a turbulent thermal plasma jet. Surf Coat Technol 37:251–270

    Article  Google Scholar 

  34. Pfender E, Fincke J, Spores R (1991) Entrainment of cold gas into thermal plasma jets. Plasma Chem Plasma Process 11:529–543

    Article  CAS  Google Scholar 

  35. Russ S, Strykowsky PJ, Pfender E (1994) Mixing in plasma and low density jets. Exp Fluids 16:297–307

    Article  Google Scholar 

  36. Rat V, Coudert JF (2009) Acoustic signature analysis of the interaction between a DC plasma jet and a suspension liquid jet. J Phys D Appl Phys 42:195202

    Article  Google Scholar 

  37. Fitaire M, Mantei TD (1972) Some experimental results on acoustic wave propagation in a plasma. Phys Fluids 15:464–469

    Article  Google Scholar 

  38. Dadgar H (1977) Acoustic emission in electric arc, Ph.D. dissertation, University of Paris, Paris (in French)

  39. Hlína J, Gruber J, Šonský J (2012) Asymmetry and frequency characteristics of instabilities in thermal plasma jet. IEEE Trans Plasma Sci 40:2795–2799

    Article  Google Scholar 

  40. Coudert JF, Fauchais P (1999) Transient phenomena in dc plasma-spray torches. Ann N Y Acad Sci 891:382–390

    Article  CAS  Google Scholar 

  41. Bisson JF, Gauthier B, Moreau C (2003) Effect of plasma fluctuations on in-flight particle parameters. J Therm Spray Technol 12:38–43

    Article  CAS  Google Scholar 

  42. Etchart-Salas R, Rat V, Coudert JF, Fauchais P, Caron N, Wittman K, Alexandre S (2007) Influence of plasma instabilities in ceramic suspension plasma spraying. J Therm Spray Technol 16:857–865

    Article  CAS  Google Scholar 

  43. Bisson JF, Moreau C (2003) Effect of plasma fluctuations on in-flight particle parameters: part II. J Therm Spray Technol 12:258–264

    Article  CAS  Google Scholar 

  44. Tingaud O, Grimaud A, Denoirjean A, Montavon G, Rat V, Coudert JF, Fauchais P, Chartier T (2008) Suspension plasma-sprayed alumina coating structures: operating parameters versus coating architecture. J Therm Spray Technol 17:662–670

    Article  CAS  Google Scholar 

  45. Benenson DM, Baker AJ, Cenkner AA (1969) Diagnostics on steady-sate cross-flow arcs. IEEE Trans Power Appar Syst 88:513–521

    Article  Google Scholar 

  46. Yang G, Cronin P, Heberlein JV, Pfender E (2006) Experimental investigations of the anode boundary layer in high intensity arcs with cross flow. J Phys D Appl Phys 39:2764–2774

    Article  CAS  Google Scholar 

  47. Meacker HH (1971) Principle of arc motion and displacement. Proc IEEE 59:439–449

    Article  Google Scholar 

  48. Meacker HH, Stablein HG (1986) What keeps an standing in a cross flow? IEEE Trans Plasma Sci 14:291–299

    Article  Google Scholar 

  49. Kelbar M, Heberlein J (2000) Physics of an arc in cross flow. J Phys D Appl Phys 33:2172–2182

    Article  Google Scholar 

  50. Li L, Xia W, Zhou H, Ma Q (2007) Three-dimensional modelling of a DC arc in cross-flow. Plasma Sci Technol 9:564–569

    Article  Google Scholar 

  51. Gonzalez JJ, Lago F, Freton P, Masquère M, Franceries X (2005) Numerical modelling of an electric arc and its interaction with the anode: part II. The three-dimensional model—influence of external forces on the arc column. J Phys D Appl Phys 38:306–318

    Article  CAS  Google Scholar 

  52. Collares MP, Pfender E (1997) Effect of current connection to the anode nozzle on plasma torch efficiency. IEEE Trans Plasma Sci 25:864–871

    Article  CAS  Google Scholar 

  53. Fischer-Schlemm W, Schoeck PA (1965) Oscillations of electric arcs with superimposed gas flow. In: Proceedings of the seventh international conference on phenomena in Ionized Gases, vol. I, Gradevinska Knjiya, Beograd, Yugoslavia, pp 720–724

  54. Steenbeck M (1932) Energetik der gasentladungen. Z Phys 33:809–815

    CAS  Google Scholar 

  55. Paik S, Huang PC, Heberlein J, Pfender E (1993) Determination of the arc root position in a DC plasma torch. Plasma Chem Plasma Process 13:379–397

    Article  CAS  Google Scholar 

  56. Li He-Ping, Pfender E, Chen Xi (2003) Application of Steenbeck’s minimum principle for three-dimensional modeling of DC arc plasma torches. J Phys D Appl Phys 36:1084–1096

    Article  CAS  Google Scholar 

  57. Benilov MS, Naidis GV (2010) What is the mathematical meaning of Steenbeck’s principle of minimum power in gas discharge physics? J Phys D Appl Phys 43:175204

    Article  Google Scholar 

  58. Christen T (2010) Comment on “What is the mathematical meaning of Steenbeck’s principle of minimum power in gas discharge physics?”. J Phys D Appl Phys 43:298001

    Article  Google Scholar 

  59. Pan W, Li T, Meng X, Chen X, Wu CK (2005) Arc root attachment on the anode surface of arc plasma torch observed with a novel method. Chin Phys Lett 22:2895–2898

    Article  CAS  Google Scholar 

  60. Noguès E, Fauchais P, Vardelle M, Granger P (2007) Relation between the arc-root fluctuations, the cold boundary layer thickness and the particle thermal treatment. J Therm Spray Technol 16:919–926

    Article  Google Scholar 

  61. Huang H, Pan W, Wu CK (2008) Arc root motion in an argon-hydrogen DC plasma torch. IEEE Trans Plasma Sci 36:1050–1051

    Article  CAS  Google Scholar 

  62. Noguès E, Vardelle M, Fauchais P, Granger P (2008) Arc voltage fluctuations: comparison between two plasma torch types. Surf Coat Technol 202:4387–4393

    Article  Google Scholar 

  63. Yang G, Heberlein JV (2007) The anode region of high intensity arcs with cold cross flow. J Phys D Appl Phys 40:5649–5662

    Article  CAS  Google Scholar 

  64. Herberlein J, Mentel J, Pfender E (2010) The anode region of electric arcs: a survey. J Phys D Appl Phys 43:023001

    Article  Google Scholar 

  65. Krowka J, Rat V, Coudert JF (2013) Investigation and control of DC arc jet instabilities to obtain a self-sustained pulsed arc jet. J Phys D Appl Phys 46:505206

    Article  Google Scholar 

  66. Trelles JP, Pfender E, Heberlein J (2010) Multiscale finite element modeling of arc dynamics in a DC plasma torch. Plasma Chem Plasma Process 26:557–575

    Article  Google Scholar 

  67. Moreau E, Chazelas C, Mariaux G, Vardelle A (2006) Modeling the restrike mode operation of a DC plasma spray torch. J Therm Spray Technol 15:524–530

    Article  Google Scholar 

  68. Trelles JP, Pfender E, Heberlein J (2007) Modelling of the arc reattachment process in plasma torches. J Phys D Appl Phys 40:5635–5648

    Article  CAS  Google Scholar 

  69. Trelles JP, Heberlein J, Pfender E (2007) Non-equilibrium modelling of arc plasma torches. J Phys D Appl Phys 40:5937–5952

    Article  CAS  Google Scholar 

  70. Ghorui S, Vysohlid M, Heberlein JRV, Pfender E (2007) Probing instabilities in arc devices using binary gas mixtures. Phys Rev E 76:016404

    Article  CAS  Google Scholar 

  71. Nemchinsky V (2014) Arc discharge anode reattachment: simple model. IEEE Trans Plasma Sci 42:4026–4030

    Article  CAS  Google Scholar 

  72. Prevosto L, Kelly H, Mancinelli B, Chamorro JC (2015) On the has heating mechanism for the fast anode arc reattachment in a non-transferred arc plasma torch operating with nitrogen gas in the restrike mode. Plasma Chem Plasma Process 35:1057–1070

    Article  CAS  Google Scholar 

  73. Yang G, Heberlein J (2007) Instabilities in the anode region of atmospheric pressure arc plasmas. Plasma Sources Sci Technol 16:765–773

    Article  CAS  Google Scholar 

  74. Ghorui S, Sahasrabudhe N, Murthy PSS, Das AK, Venkatramani N (2000) Experimental evidence of chaotic behavior in atmospheric arc discharge. IEEE Trans Plasma Sci 28:253–259

    Article  Google Scholar 

  75. Ghorui S, Das AK (2004) Theory of dynamic behavior in atmospheric pressure arc plasma devices: Part I: theory and system behavior. IEEE Trans Plasma Sci 32:296–307

    Article  CAS  Google Scholar 

  76. Ghorui S, Sahasrabudhe SN, Murthy PSS, Das AK (2004) Theory of dynamic behavior in atmospheric pressure arc plasma devices: part-II: validation of theory with experimental data. IEEE Trans Plasma Sci 32:308–315

    Article  CAS  Google Scholar 

  77. Ghorui S, Das AK (2004) Origin of fluctuations in atmospheric pressure arc plasma devices. Phys Rev E 69:026408

    Article  CAS  Google Scholar 

  78. Ghorui S, Sahasrabudhe SN, Tak Atul K, Joshi NK, Kulkarni NV, Karmakar S, Banerjee I, Bhoraskar SV, Das AK (2006) Role of arc plasma instability on nanosynthesis. IEEE Trans Plasma Sci 34:121–127

    Article  Google Scholar 

  79. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  80. Moon FC (1992) Chaotic and fractal dynamics: an introduction for applied scientists and engineers. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  81. Taylor RLV (2011) Attractors: nonstrange to chaotic. Society for Ind Appl Math 4:72–80

    Google Scholar 

  82. Delair L, Tu X, Bultel A, Chéron B (2005) Helmholtz behavior of a nitrogen plasma arc chamber. J High Temp Mater Process 9:583–597

    Article  CAS  Google Scholar 

  83. Cheron B, Bultel A, Delair L (2007) Experimental study of double arc nitrogen plasma: static and dynamic behavior. IEEE Trans Plasma Sci 35:498–508

    Article  CAS  Google Scholar 

  84. Coudert JF, Rat V, Rigot D (2007) Influence of Helmholtz oscillations on arc voltage fluctuations in a DC plasma spraying torch. J Phys D Appl Phys 40:7357–7366

    Article  CAS  Google Scholar 

  85. Coudert JF, Rat V (2008) Influence of configuration and operating conditions on the electric arc instabilities of a plasma spray torch: role of acoustic resonance. J Phys D Appl Phys 41:205208

    Article  Google Scholar 

  86. Pan WX, Guo ZY, Meng X, Huang HJ, Wu CK (2009) Fluctuation characteristics of arc voltage and jet flow in a non-transferred DC plasma generated at reduced pressure. Plasma Sources Sci Technol 18:045032

    Article  Google Scholar 

  87. Rat V, Coudert JF (2010) Pressure and arc voltage coupling in DC plasma torches: identification and extraction of oscillation modes. J Appl Phys 108:043304

    Article  Google Scholar 

  88. Rat V, Coudert JF (2010) Acoustic stabilization of electric arc instabilities in non-transferred plasma torches. Appl Phys Lett 96:101503

    Article  Google Scholar 

  89. Krowka J, Rat V, Coudert JF (2013) Resonant mode for a DC plasma spray torch by means of pressure–voltage coupling: application to synchronized liquid injection. J Phys D Appl Phys 46:224018

    Article  CAS  Google Scholar 

  90. Krowka J, Rat V, Goutier S, Coudert JF (2014) Suspension phased injection in pulsed arc jet for coating elaboration. J Therm Spray Technol 23:786–794

    Article  CAS  Google Scholar 

  91. Rat V, Krowka J, Coudert JF (2015) Modulation of the specific enthalpy of a pulsed arc plasma jet. Plasma Sources Sci Technol 24:045009

    Article  Google Scholar 

  92. Rat V, Coudert JF (2016) Theoretical and experimental investigations of the coupling of time-dependent parameters in a blown arc plasma torch. J Phys D Appl Phys 49:065203

    Article  Google Scholar 

  93. Rat V, Coudert JF (2016) Analytical interpretation of arc instabilities in a DC plasma spray torch: the role of pressure. J Phys D Appl Phys 49:235202

    Article  Google Scholar 

  94. Russ S, Pfender E, Heberlein J (1993) Anode arc attachment control using boundary layer bleed holes. In: Proceedings of the 1993 National Thermal Spray Conference, Anaheim, CA, 7–13 June 1993, pp 97–103

  95. Young RM, Pfender E (1989) A novel approach for introducing particulate matter into thermal plasmas: the triple-cathode arc. Plasma Chem Plasma Process 9:465–481

    Article  CAS  Google Scholar 

  96. Miao J, Yu D, Cao X, Xiang Y, Xiao M, Yao J (2015) Experimental study on the characteristics of a miniature laminar plasma torch with different gas flow patterns. Plasma Chem Plasma Process 35:879–893

    Article  CAS  Google Scholar 

  97. Cao X, Yu D, Xiao M, Miao J, Xiang Y, Yao J (2016) Design and characteristics of a laminar plasma torch for materials processing. Plasma Chem Plasma Process 36:693–710

    Article  CAS  Google Scholar 

  98. Mavier F, Rat V, Coudert JF (2017) Influence of time-modulation of applied current on arc stability in DC pulsed plasma spray torch. IEEE Trans Plasma Sci (accepted for publication). http://ieeexplore.ieee.org/document/7776957/

  99. Kitamura J, Usuba S, Kakudate Y, Yokoi H, Yamamoto K, Tanaka A, Fujiwara S (2003) Boron carbide coating by electromagnetically accelerated plasma spraying. J Therm Spray Technol 12:70–76

    Article  CAS  Google Scholar 

  100. Ichiki R, Nagamatsu H, Yasumatsu Y, Iwao T, Akamine S, Kanazawa S (2012) Nitriding of steel surface by spraying pulsed-arc plasma jet under atmospheric pressure. Mater Lett 71:134–136

    Article  CAS  Google Scholar 

  101. Feng X, Planche MP, Denga S, Liao H, Rabat H, Hong D (2016) Study of the particle behavior in a pulsed arc. Surf Coat Technol 287:113–118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rat, V., Mavier, F. & Coudert, J.F. Electric Arc Fluctuations in DC Plasma Spray Torch. Plasma Chem Plasma Process 37, 549–580 (2017). https://doi.org/10.1007/s11090-017-9797-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9797-7

Keywords

Navigation