Skip to main content
Log in

Influence of Working Pressure on the Al2O3 Film Properties in Plasma-Enhanced Atomic Layer Deposition

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The effect of working pressure on the properties of Al2O3 films was investigated in direct-type plasma-enhanced atomic layer deposition. Increasing pressure yielded a denser Al2O3 film and a thinner SiOx interlayer, but only slightly affected the Al2O3 film thickness. The diffusivity of O atoms was evaluated by using time-averaged emission intensities of the He I and O I lines. The consumption rate of O radicals and the production rate of H radicals, as functions of plasma exposure time, were deduced from analyzing temporal evolutions of emission intensities of the O I and Hα lines, respectively. The amounts of C and H impurities in the film were confirmed by using an X-ray photoelectron spectroscopy. Finally, the mechanisms by which the working pressure affected the properties of Al2O3 films were discussed based on the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. George SM (2010) Chem Rev 110:111

    Article  CAS  Google Scholar 

  2. Rowlette PC, Allen CG, Bromley OB, Wolden CA (2009) J Vac Sci Technol, A 27:761

    Article  CAS  Google Scholar 

  3. Dingemans G, Kessels WMM (2012) J Vac Sci Technol, A 30:040802

    Article  CAS  Google Scholar 

  4. Kim D, Kang H, Kim JM, Kim H (2011) Appl Surf Sci 257:3776

    Article  CAS  Google Scholar 

  5. Langereis E, Creatore M, Heil SBS, van de Sanden MC, Kessels WMM (2006) Appl Phys Lett 89:081915

    Article  CAS  Google Scholar 

  6. Park J-S, Chae H, Chung HK, Lee SI (2011) Semicond Sci Technol 26:034001

    Article  CAS  Google Scholar 

  7. Jung H, Jeon H, Choi H, Ham G, Shin S, Jeon H (2014) J Appl Phys 115:073502

    Article  CAS  Google Scholar 

  8. Ha S-C, Choi E, Kim S-H, Roh JS (2005) Thin Solid Films 476:252

    Article  CAS  Google Scholar 

  9. Hoex B, Heil SBS, Langereis E, van de Sanden MCM, Kessels WMM (2006) Appl Phys Lett 89:042112

    Article  CAS  Google Scholar 

  10. Langereis E, Keijmel J, van de Sanden MCM, Kessels WMM (2008) Appl Phys Lett 92:231904

    Article  CAS  Google Scholar 

  11. Rai VR, Vandalon V, Agarwal S (2010) Langmuir 26:13732

    Article  CAS  Google Scholar 

  12. Rai VR, Vandalon V, Agarwal S (2012) Langmuir 28:350

    Article  CAS  Google Scholar 

  13. Wilson CA, Grubbs RK, George SM (2005) Chem Mater 17:5625

    Article  CAS  Google Scholar 

  14. Heil SBS, van Hemmen JL, van de Sanden MCM, Kessels WMM (2008) J Appl Phys 103:103302

    Article  CAS  Google Scholar 

  15. Foroughi-Abari A, Cadien KC (2012) J Electrochem Soc 159:D59

    Article  CAS  Google Scholar 

  16. Haeberle J, Henkel K, Gargouri H, Naumann F, Gruska B, Arens M, Tallarida M, Schmeiβer D (2013) Beilstein J Nanotechnol 4:732

    Article  CAS  Google Scholar 

  17. Mackus AJM, Heil SBS, Langereis E, Knoops HC, van de Sanden MCM, Kessels WMM (2010) J Vac Sci Technol, A 28:77

    Article  CAS  Google Scholar 

  18. Ott AW, Klaus JW, Johnson JM, George SM (1997) Thin Solid Films 292:135

    Article  CAS  Google Scholar 

  19. Potts SE, Keuning W, Langereis E, Dingemans G, van de Sanden MCM, Kessels WMM (2010) J Electrochem Soc 157:P66

    Article  CAS  Google Scholar 

  20. Profijt HB, Potts SE, van de Sanden MCM, Kessels WMM (2011) J Vac Sci Technol, A 29:050801

    Article  CAS  Google Scholar 

  21. Kim J, Kim S, Kang H, Choi J, Jeon H, Cho M, Chung K, Back S, Yoo K, Bae C (2005) J Appl Phys 98:094504

    Article  CAS  Google Scholar 

  22. Kim H (2011) Thin Solid Films 519:6639

    Article  CAS  Google Scholar 

  23. Fauchais P, Coudert JF, Vardelle M (1989) In: Auciello O, Flamm DL (eds) Plasma diagnostics. Academic Press, Boston

    Google Scholar 

  24. Hur M, Kang WS, Lee JO, Song YH (2015) Plasma Chem Plasma Process 35:231

    Article  CAS  Google Scholar 

  25. Khan MA, Al-Jalal AM (2008) J Appl Phys 104:123302

    Article  CAS  Google Scholar 

  26. Katsch HM, Tewes A, Quandt E, Geohlich A, Kawetzki T, Döbele HF (2000) J Appl Phys 88:6232

    Article  CAS  Google Scholar 

  27. Gudmundsson JT, Thorsteinsson EG (2007) Plasma Sources Sci Technol 16:399

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Development Program of Manufacturing Technology for Flexible Electronics with High Performance funded by Korea Institute of Machinery and Materials (KIMM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hur, M., Kim, D.J., Kang, W.S. et al. Influence of Working Pressure on the Al2O3 Film Properties in Plasma-Enhanced Atomic Layer Deposition. Plasma Chem Plasma Process 36, 679–691 (2016). https://doi.org/10.1007/s11090-015-9677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9677-y

Keywords

Navigation