Skip to main content

Advertisement

Log in

Yields of Hydrogen and Hydrogen Peroxide from Argon–Water Vapor in Dielectric Barrier Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Controlled chemical transformation of water vapor in dielectric barrier discharge (DBD) of argon into hydrogen and hydrogen peroxide for its usability as in situ or ex situ H2 and H2O2 source are reported. Online analysis of the product gas mixture by conventional wet-chemical colorimetric method using buffered KI absorber solution revealed typical H2O2 G-value = 6.4 × 10−3 µmol J−1 (G-value defines as the number of molecules produced/consumed per 100 eV of energy; in SI unit G-value is expressed in µmol J−1) in the absence of ozone. On the other hand, H2 in product mixture analyzed in gas chromatograph-thermal conductivity detector (GC-TCD) with argon carrier revealed its G-value = 0.134 µmol J−1. Enhancements in products’ yields were explored by varying gas residence time inside the plasma zone, and applied voltage and frequency on the dielectric surfaces. Employing a double-DBD reactor, at applied high voltage ~2.5 kV mm−1 @50 Hz and gas residence time ~20 s resulted in the highest yields of H2O2. However, the H2 yield increased continuously with increase in gas residence time. On the other hand, the single-dielectric barrier surface reactors were more efficient for high and exclusive generation of ex situ H2 (e.g. maximum 1260 ppm; G-value typically 0.498 µmol J−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Das TN, Dey GR (2013) J Hazard Mater 248–249:469–477

    Article  Google Scholar 

  2. Dey GR, Sharma A, Pushpa KK, Das TN (2010) J Hazard Mater 178:693–698

    Article  CAS  Google Scholar 

  3. Dey GR, Das TN (2013) IEEE Trans Plasma Sci 41:140–146

    Article  CAS  Google Scholar 

  4. Guo Y, Liao X, Ye D (2008) J Environ Sci 20:1429–1432

    Article  CAS  Google Scholar 

  5. Deynse V, De Geyter N, Leys C, Morent R (2014) Plasma Process Polym 11:117–125

    Article  Google Scholar 

  6. Kawakami H, Zukeran A, Yasumoto K, Ehara Y, Yamamoto T (2013) IEEJ Trans Fund Mater 133:642–647

    Article  Google Scholar 

  7. Lukes P, Locke BR (2005) J Phys D Appl Phys 38:4074–4081

    Article  CAS  Google Scholar 

  8. Shih K-Y, Locke BR (2011) IEEE Trans Plasma Sci 39:883–892

    Article  CAS  Google Scholar 

  9. Wang H, Li J, Quan X, Wu Y, Li G, Wang F (2007) J Hazard Mat 141:336–343

    Article  CAS  Google Scholar 

  10. Lukes P, Appleton AT, Locke BR (2002) Published in industry applications conference, 37th IAS annual meeting, vol 3, pp 1816–1821

  11. Ono R, Oda T (2003) J Appl Phys 93:5876–5882

    Article  CAS  Google Scholar 

  12. Burlica R, Finney WC, Locke BR (2013) IEEE Trans Ind Appl 49:1098–1103

    Article  Google Scholar 

  13. Anpilov AM, Barkhudrarov EM, Bark YB, Zadiraka YV, Christof M, Koztov YN, Kossyi IA, Kopev VA, Silakov VP, Taktakish MI, Temchin SM (2001) J Appl Phys 34:993–999

    CAS  Google Scholar 

  14. Dodet B, Odic E, Goldman A, Goldman M, Renard D (2005) J Adv Oxid Technol 8:91–97

    CAS  Google Scholar 

  15. Kirkpatrick MJ, Dodet B, Odic E (2007) Int J Plasma Environ Sci Technol 1:96–101

    Google Scholar 

  16. Velikonja J, Bergougnou MA, Peter Castle GS, Caims WL, Inculet I (2001) Ozone Sci Eng J Int Ozone Assoc 23:467–478

  17. Falkenstein Z (1999) Ozone Sci Eng J Int Ozone Assoc 21:583–603

  18. Kozlov KV, Odic E, Tatarenko PA, Dodet B, Fedoseev GS, Kirkpatrick MJ, Samoilovich VG, Ganciu M (2006) Published in “10th International Symposium on High Pres. Low Temp. Plasma, SAGA: Japan (2006)” hal-00221303, version 1–28 Jan 2008. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.372.1877&rep=rep1&type=pdf. Accessed 25 March 2015

  19. Buckley PT, Birks JW (1995) Atmos Environ 29:2409–2415

    Article  CAS  Google Scholar 

  20. Robert LH (1979) Toxicol Lett 4:449–453

    Article  Google Scholar 

  21. Kogoma M, Miki Y, Tanaka K, Takahashi K (2006) Plasma Process Polym 3:727–733

    Article  CAS  Google Scholar 

  22. Ghormley JA, Stewart AC (1956) J Am Chem Soc 78:2934–2939

    Article  CAS  Google Scholar 

  23. Palmer DA, Ramette RW, Mesmer RE (1984) J Sol Chem 13:673–683

    Article  CAS  Google Scholar 

  24. Awtrey AD, Connic RE (1951) J Am Chem Soc 73:1842–1843

    Article  CAS  Google Scholar 

  25. Manley TC (1943) Trans Electrochem Soc 84:83–96

    Article  Google Scholar 

  26. Flores-Fuentes A, Peña-Eguiluz R, López-Callejas R, Mercado-Cabrera A, Valencia-Alvarado R, Barocio-Delgado S, de la Piedad-Beneitez A (2009) IEEE Trans Plasma Sci 37:128–134

    Article  CAS  Google Scholar 

  27. Kogelschatz U, Eliasson B, Egli W (1997) J de Phys IV 7:C4/47–C4/66

  28. Dwivedi C, Toley MA, Dey GR, Das TN (2013) Ozone Sci Eng 35:134–145

  29. Humidity calculator, http://www.humidity-calculator.com/index.php. Accessed 6 Jan 2015

  30. H2O2 decomposition. http://en.wikipedia.org/wiki/Hydrogen_peroxide. Accessed 6 Jan 2015

  31. Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Angew Chem Int Ed 45:6962–6984

    Article  CAS  Google Scholar 

  32. Takechi K, Lieberman MA (2001) J Appl Phys 90:3205–3211

    Article  CAS  Google Scholar 

  33. Kogelschatz U (2003) Plasma Chem Plasma Process 23:1–46

    Article  CAS  Google Scholar 

  34. Eliasson B, Kogelschatz U (1988) Appl Phys B 46:299–303

    Article  Google Scholar 

  35. Yoshinaga T, Akashi H (2013) J Phys: Conf Ser 441:012013

    Google Scholar 

  36. Ghassemi M, Mohseni H, Niayesh K, Shayegani AA (2012) IEEE Trans Dielect Elect Insul 19:865–876

    Article  CAS  Google Scholar 

  37. Baricholo P, Hlatywayo DJ, von Bergmann HM, Stehmann T, Rohwer E, Collier M (2011) S Afr J Sci 107:Art. #581:1-7

  38. Dielectric Barrier Discharge, Solved with COMSOL Multiphysics 4.4. https://www.comsol.co.in/model/download/186245/models.plasma.argon_dbd_1d.pdf. Accessed 25 March 2015

Download references

Acknowledgments

This research was carried out under the plan Project No: XII-N-R&D-02.1. Authors thank the Department of Atomic Energy, Government of India and Bhabha Atomic Research Centre for funds, and all members of Radiation & Photochemistry Division for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Dey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, G.R., Das, T.N. Yields of Hydrogen and Hydrogen Peroxide from Argon–Water Vapor in Dielectric Barrier Discharge. Plasma Chem Plasma Process 36, 523–534 (2016). https://doi.org/10.1007/s11090-015-9675-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9675-0

Keywords

Navigation