Plasma Chemistry and Plasma Processing

, Volume 36, Issue 2, pp 523–534 | Cite as

Yields of Hydrogen and Hydrogen Peroxide from Argon–Water Vapor in Dielectric Barrier Discharge

  • G. R. DeyEmail author
  • Tomi Nath Das
Original Paper


Controlled chemical transformation of water vapor in dielectric barrier discharge (DBD) of argon into hydrogen and hydrogen peroxide for its usability as in situ or ex situ H2 and H2O2 source are reported. Online analysis of the product gas mixture by conventional wet-chemical colorimetric method using buffered KI absorber solution revealed typical H2O2 G-value = 6.4 × 10−3 µmol J−1 (G-value defines as the number of molecules produced/consumed per 100 eV of energy; in SI unit G-value is expressed in µmol J−1) in the absence of ozone. On the other hand, H2 in product mixture analyzed in gas chromatograph-thermal conductivity detector (GC-TCD) with argon carrier revealed its G-value = 0.134 µmol J−1. Enhancements in products’ yields were explored by varying gas residence time inside the plasma zone, and applied voltage and frequency on the dielectric surfaces. Employing a double-DBD reactor, at applied high voltage ~2.5 kV mm−1 @50 Hz and gas residence time ~20 s resulted in the highest yields of H2O2. However, the H2 yield increased continuously with increase in gas residence time. On the other hand, the single-dielectric barrier surface reactors were more efficient for high and exclusive generation of ex situ H2 (e.g. maximum 1260 ppm; G-value typically 0.498 µmol J−1).


Dielectric barrier discharge Argon Water vapor Hydrogen Hydrogen peroxide Free radical reactions Gas chromatograph 



This research was carried out under the plan Project No: XII-N-R&D-02.1. Authors thank the Department of Atomic Energy, Government of India and Bhabha Atomic Research Centre for funds, and all members of Radiation & Photochemistry Division for their support.

Supplementary material

11090_2015_9675_MOESM1_ESM.doc (36 kb)
Supplementary material 1 (doc 36 kb)


  1. 1.
    Das TN, Dey GR (2013) J Hazard Mater 248–249:469–477CrossRefGoogle Scholar
  2. 2.
    Dey GR, Sharma A, Pushpa KK, Das TN (2010) J Hazard Mater 178:693–698CrossRefGoogle Scholar
  3. 3.
    Dey GR, Das TN (2013) IEEE Trans Plasma Sci 41:140–146CrossRefGoogle Scholar
  4. 4.
    Guo Y, Liao X, Ye D (2008) J Environ Sci 20:1429–1432CrossRefGoogle Scholar
  5. 5.
    Deynse V, De Geyter N, Leys C, Morent R (2014) Plasma Process Polym 11:117–125CrossRefGoogle Scholar
  6. 6.
    Kawakami H, Zukeran A, Yasumoto K, Ehara Y, Yamamoto T (2013) IEEJ Trans Fund Mater 133:642–647CrossRefGoogle Scholar
  7. 7.
    Lukes P, Locke BR (2005) J Phys D Appl Phys 38:4074–4081CrossRefGoogle Scholar
  8. 8.
    Shih K-Y, Locke BR (2011) IEEE Trans Plasma Sci 39:883–892CrossRefGoogle Scholar
  9. 9.
    Wang H, Li J, Quan X, Wu Y, Li G, Wang F (2007) J Hazard Mat 141:336–343CrossRefGoogle Scholar
  10. 10.
    Lukes P, Appleton AT, Locke BR (2002) Published in industry applications conference, 37th IAS annual meeting, vol 3, pp 1816–1821Google Scholar
  11. 11.
    Ono R, Oda T (2003) J Appl Phys 93:5876–5882CrossRefGoogle Scholar
  12. 12.
    Burlica R, Finney WC, Locke BR (2013) IEEE Trans Ind Appl 49:1098–1103CrossRefGoogle Scholar
  13. 13.
    Anpilov AM, Barkhudrarov EM, Bark YB, Zadiraka YV, Christof M, Koztov YN, Kossyi IA, Kopev VA, Silakov VP, Taktakish MI, Temchin SM (2001) J Appl Phys 34:993–999Google Scholar
  14. 14.
    Dodet B, Odic E, Goldman A, Goldman M, Renard D (2005) J Adv Oxid Technol 8:91–97Google Scholar
  15. 15.
    Kirkpatrick MJ, Dodet B, Odic E (2007) Int J Plasma Environ Sci Technol 1:96–101Google Scholar
  16. 16.
    Velikonja J, Bergougnou MA, Peter Castle GS, Caims WL, Inculet I (2001) Ozone Sci Eng J Int Ozone Assoc 23:467–478Google Scholar
  17. 17.
    Falkenstein Z (1999) Ozone Sci Eng J Int Ozone Assoc 21:583–603Google Scholar
  18. 18.
    Kozlov KV, Odic E, Tatarenko PA, Dodet B, Fedoseev GS, Kirkpatrick MJ, Samoilovich VG, Ganciu M (2006) Published in “10th International Symposium on High Pres. Low Temp. Plasma, SAGA: Japan (2006)” hal-00221303, version 1–28 Jan 2008. Accessed 25 March 2015
  19. 19.
    Buckley PT, Birks JW (1995) Atmos Environ 29:2409–2415CrossRefGoogle Scholar
  20. 20.
    Robert LH (1979) Toxicol Lett 4:449–453CrossRefGoogle Scholar
  21. 21.
    Kogoma M, Miki Y, Tanaka K, Takahashi K (2006) Plasma Process Polym 3:727–733CrossRefGoogle Scholar
  22. 22.
    Ghormley JA, Stewart AC (1956) J Am Chem Soc 78:2934–2939CrossRefGoogle Scholar
  23. 23.
    Palmer DA, Ramette RW, Mesmer RE (1984) J Sol Chem 13:673–683CrossRefGoogle Scholar
  24. 24.
    Awtrey AD, Connic RE (1951) J Am Chem Soc 73:1842–1843CrossRefGoogle Scholar
  25. 25.
    Manley TC (1943) Trans Electrochem Soc 84:83–96CrossRefGoogle Scholar
  26. 26.
    Flores-Fuentes A, Peña-Eguiluz R, López-Callejas R, Mercado-Cabrera A, Valencia-Alvarado R, Barocio-Delgado S, de la Piedad-Beneitez A (2009) IEEE Trans Plasma Sci 37:128–134CrossRefGoogle Scholar
  27. 27.
    Kogelschatz U, Eliasson B, Egli W (1997) J de Phys IV 7:C4/47–C4/66Google Scholar
  28. 28.
    Dwivedi C, Toley MA, Dey GR, Das TN (2013) Ozone Sci Eng 35:134–145Google Scholar
  29. 29.
    Humidity calculator, Accessed 6 Jan 2015
  30. 30.
    H2O2 decomposition. Accessed 6 Jan 2015
  31. 31.
    Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Angew Chem Int Ed 45:6962–6984CrossRefGoogle Scholar
  32. 32.
    Takechi K, Lieberman MA (2001) J Appl Phys 90:3205–3211CrossRefGoogle Scholar
  33. 33.
    Kogelschatz U (2003) Plasma Chem Plasma Process 23:1–46CrossRefGoogle Scholar
  34. 34.
    Eliasson B, Kogelschatz U (1988) Appl Phys B 46:299–303CrossRefGoogle Scholar
  35. 35.
    Yoshinaga T, Akashi H (2013) J Phys: Conf Ser 441:012013Google Scholar
  36. 36.
    Ghassemi M, Mohseni H, Niayesh K, Shayegani AA (2012) IEEE Trans Dielect Elect Insul 19:865–876CrossRefGoogle Scholar
  37. 37.
    Baricholo P, Hlatywayo DJ, von Bergmann HM, Stehmann T, Rohwer E, Collier M (2011) S Afr J Sci 107:Art. #581:1-7Google Scholar
  38. 38.
    Dielectric Barrier Discharge, Solved with COMSOL Multiphysics 4.4. Accessed 25 March 2015

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Radiation and Photochemistry DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations