Skip to main content
Log in

Chemical Investigation on Various Aromatic Compounds Polymerization in Low Pressure Helium Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Remarkable properties of plasma polymer films are greatly dependent not only on the chemical structure of precursor but also on the reactor design and the deposition conditions. In many industrial applications it is a challenge to control the plasma polymer structure. In this paper we investigate the chemical transformation of various aromatic compounds, such as activation and fragmentation of substituent-part, aromatic ring opening, during plasma polymerization process. Polymerized films are deposited in a low-frequency capacitively coupled plasma-enhanced chemical vapour deposition reactor, working at low pressure. The chemical composition of plasma-polymerized films is elucidated by Fourier-transform infrared spectroscopy, solid-state carbon-13 nuclear magnetic resonance spectroscopy, and X-ray photoelectron spectroscopy. Based on spectroscopic measurements, the intermediary reactions during film growth may be presumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 5

Similar content being viewed by others

References

  1. Asandulesa M, Topala I, Pohoata V, Dumitrascu N (2010) Influence of operational parameters on plasma polymerization process at atmospheric pressure. J Appl Phys 108:093310–093316

    Article  Google Scholar 

  2. d’Agostino R, Cramarossa F, Fracassi F (1990) Plasma polymerization of fluorocarbons. Academic Press, New York

    Google Scholar 

  3. Albaugh J, O’Sullivan C, O’Neill L (2008) Controlling deposition rates in an atmospheric pressure plasma system. Surf Coat Technol 203:844–847

    Article  CAS  Google Scholar 

  4. Arefi F, Andre V, Montazer-Rahmati P, Amouroux J (1992) Plasma polymerization and surface treatment of polymers. Pure Appl Chem 64:715–723

    Article  CAS  Google Scholar 

  5. Asandulesa M, Topala I, Pohoata V, Legrand YM, Dobromir M, Totolin M, Dumitrascu N (2013) Chemically polymerization mechanism of aromatic compounds under atmospheric pressure plasma conditions. Plasma Process Polym 10:469–480

    Article  CAS  Google Scholar 

  6. Forch R, Chifen AN, Bousquet A, Khor HL, Jungblut M, Chu L-Q, Zhang Z, Osey-Mensah I, Sinner E-K, Knoll W (2007) Recent and expected roles of plasma-polymerized films for biomedical applications. Chem Vap Depos 13:280–294

    Article  Google Scholar 

  7. Yasuda H, Hirotsu T (1978) Critical evaluation of conditions of plasma polymerization. J Polym Sci Polym Chem 16:743–759

    Article  CAS  Google Scholar 

  8. Yasuda H (1985) Plasma polymerization. Academic Press, New York

    Google Scholar 

  9. Hegemann D, Hossain MM, Korner E, Balazs DJ (2007) Macroscopic description of plasma polymerization. Plasma Process Polym 4:229–238

    Article  CAS  Google Scholar 

  10. Hegemann D, Korner E, Guimond S (2010) Reply to: ‘‘testing the hypothesis: comments on plasma polymerization of acrylic acid revisited’’. Plasma Process Polym 7:371–375

    Article  CAS  Google Scholar 

  11. Stille JK, Sung RL, Van der Kooi J (1965) The reaction of benzene in a radiofrequency glow discharge. J Org Chem 30:3116–3119

    Article  CAS  Google Scholar 

  12. Kaplan S, Dilks A (1983) The structure of plasma-polymerized toluene: a solid-state 13C-NMR study of isotopically labeled polymers. J Polym Sci Pol Chem 21:1819–1829

    Article  CAS  Google Scholar 

  13. Friedrich J (2011) Mechanisms of plasma polymerization—reviewed from a chemical point of view. Plasma Process Polym 8:783–802

    Article  CAS  Google Scholar 

  14. Socrates G (2004) Infrared and raman characteristic group frequencies. Wiley, Baffins Lane, Chichester

    Google Scholar 

  15. Yang JC, Jablonsky MJ, Mays JW (2002) NMR and FT[hyphen]IR studies of sulfonated styrene[hyphen]based homopolymers and copolymers. Polymer 43:5125–5132

    Article  CAS  Google Scholar 

  16. Tolstorozhev G, Skornyakov I, Bel’kov M, Shadyro O, Brinkevich S, Samovich S (2012) IR spectra of benzaldehyde and its derivatives in different aggregate states. Opt Spectrosc 113:179–183

    Article  CAS  Google Scholar 

  17. Reichenbächer M, Popp J (2012) Challenges in molecular structure determination. Springer, Berlin

    Book  Google Scholar 

  18. Mannion JJ, Wang TS (1964) An infrared study of the CH2Cl group in benzyl chloride and derivatives. Spectrochim Acta 20:45–49

    Article  CAS  Google Scholar 

  19. Spectral Database for Organic Compounds (SDBS), National Institute of Advanced Industrial Science and Technology (AIST), Japan. http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi. Accessed August 2013

  20. Merche D, Poleunis C, Bertrand P, Sferrazza M, Reniers F (2009) Synthesis of polystyrene thin films by means of an atmospheric-pressure plasma torch and a dielectric barrier discharge. IEEE Trans Plasma Sci 37:951–960

    Article  CAS  Google Scholar 

  21. NIST X-Ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 3.5. http://srdata.nist.gov/xps/. Accessed August 2013

  22. Zhang C, Hu J, Cong J, Zhao Y, Shen W, Toyoda H, Nagatsu M, Meng Y (2011) Pulsed plasma-polymerized alkaline anion-exchange membranes for potential application in direct alcohol fuel cells. J Power Sources 196:1–8

    Article  Google Scholar 

  23. Luo HL, Sheng J, Wan YZ (2007) Plasma polymerization of styrene with carbon dioxide under glow discharge conditions. Appl Surf Sci 253:5203–5207

    Article  CAS  Google Scholar 

  24. Gadgil JM, Rajan CR, Ponrathnam S, Rajamohanan PR, Ganapathy S (1991) Acrolein-acrylic acid copolymers: a solid-state 13C-NMR study of free aldehyde groups. J Polym Sci Pol Chem 29:1077–1081

    Article  CAS  Google Scholar 

  25. Joseph R, Ford WT, Zhang S, Tsyurupa MP, Pastukhov AV, Davankov VA (1997) Solid-state 13C-NMR analysis of hypercrosslinked polystyrene. J Polym Sci Pol Chem 35:695–701

    Article  CAS  Google Scholar 

  26. Wu RR, Kao HM, Chiang JC, Woo EM (2002) Solid-state NMR studies on phase behavior and motional mobility in binary blends of polystyrene and poly(cyclohexyl metacrylate). Polymer 43:171–176

    Article  Google Scholar 

  27. Law RV, Sherrington DC, Snape CE (1996) Solid-state 13C MAS NMR studies of hyper-cross-linked polystyrene resins. Macromolecules 29:6284–6293

    Article  CAS  Google Scholar 

  28. Merche D, Vandencasteele N, Reniers F (2012) Atmospheric plasmas for thin film deposition: a critical review. Thin Solid Films 52:4219–4236

    Article  Google Scholar 

  29. Bothe M, Schmidt-Naake G (2004) Nitroxide-mediated radical polymerization with bisaminooxy compounds as initiators—controlled biradical polymerization. Macromol Chem Phys 205:208–216

    Article  CAS  Google Scholar 

  30. Sanderson RT (1971) Chemical bonds and bond energy. Academic Press, London

    Google Scholar 

Download references

Acknowledgments

Philippe Gaveau, Marius Dobromir and Romain Coustel are gratefully acknowledged for their valuable help in 13C-NMR, XPS and SEM analyses, respectively. This work was supported by European Union’s Seventh Framework Programme (Grant Agreement No. 264115-STREAM, call FP7-REGPOT-2010-1) and Romanian Space Agency (ROSA), project STAR CDI ID 349/2014-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionut Topala.

Additional information

Paper dedicated to the 65th anniversary of “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asandulesa, M., Topala, I., Legrand, YM. et al. Chemical Investigation on Various Aromatic Compounds Polymerization in Low Pressure Helium Plasma. Plasma Chem Plasma Process 34, 1219–1232 (2014). https://doi.org/10.1007/s11090-014-9555-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9555-z

Keywords

Navigation