Skip to main content

Advertisement

Log in

Removal of Carbon Disulfide from Gas Streams Using Dielectric Barrier Discharge Plasma Coupled with MnO2 Catalysis System

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The removal of gaseous carbon disulfide (CS2) via dielectric barrier discharge (DBD) combined with MnO2 catalysis has been investigated. CS2 removal and energy yield (EY) had been examined as a function of catalyzer position in DBD reactor, initial CS2 concentration, input power, and gas residence time. The results showed that DBD combined with MnO2 catalyst can improve the CS2 energy and removal efficiency, and MnO2 catalyst placed in afterglow area can enhance the CS2 removal efficiency by about 10 % as compared with DBD treatment only. When increasing initial CS2 concentration and flow rate, a higher EY is obtained. The possible CS2 removal pathways by DBD combined with MnO2 were proposed based on the product identification by FT-IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang L, Wang SD, Yuan Q (2007) Removal of carbon disulfide via coupled reactions on a bi-functional catalyst: experimental and modeling results. Chemosphere 69:1689–1694

    Article  CAS  Google Scholar 

  2. Price B, Bergman TS, Rodríguez M, Henrich RT, Moran EJ (1997) A review of carbon disulfide exposure data and the association between carbon disulfide exposure and ischemic heart disease mortality. Regul Toxicol Pharm 26:19–128

    Article  Google Scholar 

  3. Wronska-Nofer T, Nofer JR, Stetkiewicz J, Wierzbicka M, Bolinska H, Fobker M (2007) Evidence for oxidative stress at elevated plasma thiol levels in chronic exposure to carbon disulfide (CS2) and coronary heart disease. Nutr Metab Cardiovasc 17:546–553

    Article  CAS  Google Scholar 

  4. Wang L, Wu Y, Wang SD, Yuan Q (2008) Coupling catalytic hydrolysis and oxidation for CS2 removal. J Environ Sci 20:436–440

    Article  CAS  Google Scholar 

  5. Xu XJ (2001) Dielectric barrier discharge properties and applications. Thin Solid Films 390:237–242

    Article  CAS  Google Scholar 

  6. Xia LY, Huang L, Shu XH, Zhang RX, Dong WB, Hou HQ (2008) Removal of ammonia from gas streams with dielectric barrier discharge plasmas. J Hazard Mater 152:113–119

    Article  CAS  Google Scholar 

  7. Holzer F, Roland U, Kopinke FD (2002) Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: part 1. Accessibility of the intra-particle volume. Appl Catal B 38:163–181

    Article  CAS  Google Scholar 

  8. Krawczyk K, Mlotek M (2001) Combined plasma-catalytic processing of nitrous oxide. Appl Catal B 30:233–245

    Article  CAS  Google Scholar 

  9. Futamura S (2005) VOCs Removal with Nonthermal Plasma and Catalysts. J Jpn Inst Energy 84:474–479

    CAS  Google Scholar 

  10. Liu HX, Liu Y (2011) Removal of P-Xylene by a DBD-type plasma combined with catalyst. J Environ Eng Manage 10:749–753

    CAS  Google Scholar 

  11. Vandenbroucke AM, Morent R, Geyter ND, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54

    Article  CAS  Google Scholar 

  12. Kirkpatrick MJ, Odic E, Zinola S, Lavy J (2012) Plasma assisted heterogeneous catalytic oxidation: HCCI diesel engine investigations. Appl Catal B 117:1–9

    Article  Google Scholar 

  13. Einaga H, Ibusuki T, Futamura S (2001) Performance evaluation of a hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene decomposition. IEEE Trans Ind Appl 37:1476–1482

    Article  CAS  Google Scholar 

  14. Fan X, Zhu TL, Wang MY, Li XM (2009) Removal of low-concentration BTX in air using a combined plasma catalysis system. Chemosphere 75:1301–1306

    Article  CAS  Google Scholar 

  15. Han SB, Oda T, Ono R (2005) Improvement of the energy efficiency in the decomposition of dilute trichloroethylene by the barrier discharge plasma process. IEEE Trans Ind Appl 41:1343–1349

    Article  Google Scholar 

  16. Langley CE, Çljuki B, Banks CE, Compton RG (2007) Manganese dioxide graphite composite electrodes: application to the electroanalysis of hydrogen peroxide, ascorbic acid and nitrite. Anal Sci 23:165–170

    Article  Google Scholar 

  17. Ayrault C, Barrault J, Blin-Simiand N, Jorand F, Pasquiers S, Rousseau A, Tatibouët JM (2004) Oxidation of 2-heptanone in air by a DBD-type plasma generated within a honeycomb monolith supported Pt-based catalyst. Catal Today 89:75–81

    Article  CAS  Google Scholar 

  18. Fan HY, Shi C, Li XS, Zhao DZ, Xu Y, Zhu AM (2009) High-efficiency plasma catalytic removal of dilute benzene from air. J Phys D Appl Phys 42:225105

    Article  Google Scholar 

  19. Fei JB, Cui Y, Yan XH, Qi W, Yang Y, Wang KW, He Q, Li JB (2008) Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv Mater 20:452–456

    Article  Google Scholar 

  20. Wang CY, Zhang Y, Han JR, Zhang M (2009) Analysis of the factors of diethylamine spectro-photometric method to determine the content of carbon disulfide in ambient air. Instrum Anal Monit 1:44–46

    Google Scholar 

  21. Fang HJ, Hou HQ, Xia LY, Shu XH, Zhang RX (2007) A combined plasma photolysis (CPP) methodfor removal of CS2 from gas streams at atmospheric pressure. Chemosphere 69:1734–1739

    Article  CAS  Google Scholar 

  22. Kim HH, Prieto G, Takashima K, Katsura S, Mizuno A (2002) Performance evaluation of discharge plasma process for gaseous pollution removal. J Electrostat 55:25–41

    Article  CAS  Google Scholar 

  23. Ruan JJ, Li W, Shi Y, Nie Y, Wang X, Tan TE (2005) Decomposition of simulated odors in municipal wastewater treatment plants by a wire-plate pulse corona reactor. Chemosphere 59:327–333

    Article  CAS  Google Scholar 

  24. Huang L, Xia LY, Ge XX, Jing HY, Dong WB, Hou HQ (2012) Removal of H2S from gas stream using combined plasma photolysis technique at atmospheric pressure. Chemosphere 88(2):229–234

    Article  CAS  Google Scholar 

  25. Chirokov A, Gutsol A, Fridman A, Sieber KD, Grace JM, Robinson KS (2004) Analysis of two-dimensional microdischarge distribution in dielectric-barrier discharges. Plasma Sources Sci Technol 13(4):623–635

    Article  CAS  Google Scholar 

  26. Kim HS, Stair PC (2004) Bacterially produced manganese oxide and todorokite: UV raman spectroscopic comparison. J Phys Chem B 108:17019–17026

    Article  CAS  Google Scholar 

  27. Li SJ, Ma ZC, Ding KQ, Liu JZ (2007) Inhibition Effect of δ-MnO2 on TiO2 photocatalytic degradation of methyl orange. Chem J Chinese U 28:2338–2342

    CAS  Google Scholar 

  28. Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol 43:2216–2227

    Article  CAS  Google Scholar 

  29. Zheng GY, Jiang JM, Wu YP, Zhang RX, Hou HQ (2003) The mutual conversion of CO2 and CO in dielectric barrier discharge (DBD). Plasma Chem Plasma Process 23:59–68

    Article  Google Scholar 

  30. Ye ZL, Zhang YN, Li P, Yang LY, Zhang RX, Hou HQ (2008) Feasibility of destruction of gaseous benzene with dielectric barrier discharge. J Hazard Mater 156:356–364

    Article  CAS  Google Scholar 

  31. Chang JS (2001) Recent development of plasma pollution control technology: a critical review. Sci Technol Adv Mat 2:571–576

    Article  CAS  Google Scholar 

  32. Li XB (2008) Study on the characteristics of dielectric barrier discharge and the removal of cyclohexanone by dielectric barrier discharge. Master Dissertation of Dalian Maritime University

  33. Atkinson R, Baulch DL, Cox RA, Hampson RF Jr, Kerr JA, Troe J (1992) Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement IV. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J Phys Chem Ref Data 21:1125–1568

    Article  CAS  Google Scholar 

  34. Naydenov A, Mehandjiev D (1993) Complete oxidation of benzene on manganese dioxide by ozone. Appl Catal A 97:17–22

    Article  CAS  Google Scholar 

  35. Li W, Gibbs GV, Oyama ST (1998) Mechanism of ozone decomposition on a manganese oxide catalyst 1. In situ Raman spectroscopy and Ab initio molecular orbital calculations. J Am Chem Soc 120:9041–9046

    Article  CAS  Google Scholar 

  36. Li W, Oyama ST (1998) Mechanism of ozone decomposition on a manganese oxide catalyst 2. Steady-state and transient kinetic studies. J Am Chem Soc 120:9047–9052

    Article  CAS  Google Scholar 

  37. Harling AM, Glover DJ, Whitehead JC, Zhang K (2009) The role of ozone in the plasma-catalytic destruction of environmental pollutants. Appl Catal B 90:157–161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Scientific Research Foundation for the Returned overseas Chinese Scholars, Ministry of Education of China (2012JYLH0426); Natural Science Foundation of China (NSFC) (21177034) and Key Laboratory of Environmental Science and Engineering of Jiangsu province, China (ZD071202) for support this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Huang or Jiaquan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, C., Lu, J., Wang, X. et al. Removal of Carbon Disulfide from Gas Streams Using Dielectric Barrier Discharge Plasma Coupled with MnO2 Catalysis System. Plasma Chem Plasma Process 33, 569–579 (2013). https://doi.org/10.1007/s11090-013-9446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9446-8

Keywords

Navigation