Plasma Chemistry and Plasma Processing

, Volume 32, Issue 4, pp 833–843 | Cite as

Functional Military Textile: Plasma-Induced Graft Polymerization of DADMAC for Antimicrobial Treatment on Nylon-Cotton Blend Fabric

  • Priya Malshe
  • Maryam Mazloumpour
  • Ahmed El-Shafei
  • Peter Hauser
Original Paper


In this study, diallyldimethylammonium chloride (DADMAC), a quaternary ammonium salt monomer, is graft polymerized on 50–50 Nylon-Cotton (NyCo) standard military fabric using atmospheric pressure glow discharge plasma to impart self-detoxification capability. Atmospheric pressure plasma is used to induce free radical chain polymerization of the DADMAC monomer to introduce a graft polymerized network on the fabric with durable antimicrobial properties. Pentaerythritol tetraacrylate (PETA) is used as a cross-linking agent to obtain a highly cross-linked, durable polymer network. The presence of polyDADMAC on the fabric surface is confirmed using acid dye staining, SEM, and TOF–SIMS. Antibacterial performance is investigated using standard AATCC Test Method 100 for both gram positive and gram negative bacteria. Results show 99.9 % reduction in the bacterial activities of Klebsiella pneumoniae and Staphylococcus aureus.


Antimicrobial Plasma DADMAC Crosslinkers 


  1. 1.
    Wilusz E (ed) (2008) Military textiles. Woodhead Publishing Limited, EnglandGoogle Scholar
  2. 2.
    Joint Services Lightweight Integrated Suit Technology [Online], Available at: (accessed: 30 June, 2010)
  3. 3.
    Thorne J, Hollander A, Jaeger W, Trick I, Oehr C (2003) Surf Coat Technol 174:584CrossRefGoogle Scholar
  4. 4.
    Lu J, Wang X, Xiao C (2008) Carbohydr Polym 73:427CrossRefGoogle Scholar
  5. 5.
    Van der Mei H, Abbing M, Langworthy D, Collias D, Mitchell M, Bjorkquist D, Busscher H (2007) Biotechnol Bioeng. doi: 10.1002/bit.21538 Google Scholar
  6. 6.
    Test plan for DADMAC, A report submitted to EPA 2004, CAS No. 7398-69-8Google Scholar
  7. 7.
    Ramachandran T, Rajendrakumar K, Rajendran R (2004) IE (I) J 8:42Google Scholar
  8. 8.
    Bioguard® Literature, Derma Sciences Inc., available online:, accessed: 01/22/2011
  9. 9.
    Mikhaylova A, Liesenfeld B, Moore D (2011) Quick-Med Technologies, Inc. Available online: (accessed: 01/22/2011)
  10. 10.
    Gawish SM, Ramadan AM, Cornelius C, Wafa DM, McCord MG, Bourham MA (2007) Text Res J 77:93CrossRefGoogle Scholar
  11. 11.
    March Plasma Systems, Surface modification processes, (accessed June, 2010)
  12. 12.
    Friedrich JF, Mix R, Kuhn G (2005) Surf Coat Technol 200:565CrossRefGoogle Scholar
  13. 13.
    Coulson SR, Woodward I, Badyal JPS, Brewer SA, Willis C (2000) J Phys Chem 104:8836CrossRefGoogle Scholar
  14. 14.
    Cornelius C (2006) Atmospheric plasma characterization and mechanisms of substrate surface modification, MS thesis, North Carolina State University (Raleigh, USA)Google Scholar
  15. 15.
    Geyter N, Morent R (2006) Surf Coat Technol 201:2460CrossRefGoogle Scholar
  16. 16.
    Blinco JP, Greiner A, Barner-Kowollik C, Agarwal S (2011) Eur Polymer J 47:111CrossRefGoogle Scholar
  17. 17.
    Davis R, El-Shafei A, Hauser P (2011) Use of atmospheric pressure plasma to confer durable water repellent functionality and antimicrobial functionality on cotton/polyester blend. Surf Coat Technol 205:4791CrossRefGoogle Scholar
  18. 18.
    Company website for technical information on atmospheric pressure plasma devices, (accessed May, 2010)
  19. 19.
    Technical Manual of the American Association of Textile Chemists and Colorists (2009) 84:143Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Priya Malshe
    • 1
  • Maryam Mazloumpour
    • 1
  • Ahmed El-Shafei
    • 1
  • Peter Hauser
    • 1
  1. 1.Fiber and Polymer Science ProgramNorth Carolina State UniversityRaleighUSA

Personalised recommendations