Advertisement

Plasma Chemistry and Plasma Processing

, Volume 28, Issue 2, pp 203–211 | Cite as

Plasma Activation of Wood Surface by Diffuse Coplanar Surface Barrier Discharge

  • Maria Odrášková
  • Jozef Ráhel’
  • Anna Zahoranová
  • Radovan Tiňo
  • Mirko Černák
Original Paper

Abstract

Radial cuts of Pedunculate oak (Quercus robur L.) heartwood was activated by Diffuse Coplanar Surface Barrier Discharge (DCSBD) plasma. The plasma treatment resulted in a considerable increase of free surface energy and in the substantial reduction of 50 μl water droplet uptake time. FTIR analysis confirmed the formation of additional polar functional groups on the wood surface due to the plasma treatment. This is consistent with the shift of wood surface pH level towards more acidic values. The energy efficiency of the DCSBD plasma treatment is better comparing to the known volume dielectric barrier discharge treatment method.

Keywords

Oak wood Plasma activation Atmospheric pressure plasma DCSBD Coplanar discharge 

Notes

Acknowledgment

The research was supported in part by the Slovak Research and Development Agency, Project No. APVT-20-033004 and the Czech Science Foundation, Grant No. 202/05/0777.

References

  1. 1.
    Charles R, Frihart R (2004) In: Rowell RM (ed) Handbook of wood chemistry and wood composites, chap. 9. CRC Press, pp 215–278Google Scholar
  2. 2.
    Sernek M, Kamke FA, Glasser WG (2004) Holzforschung 58:22–31CrossRefGoogle Scholar
  3. 3.
    Sakata I, Morita M et al (1993) J Appl Polym Sci 49:1251–1258CrossRefGoogle Scholar
  4. 4.
    Podgorski L, Chevet B et al (2000) Int J Adhes Adhes 20(2):103–111CrossRefGoogle Scholar
  5. 5.
    Rehn P, Wolkenhauer A et al (2003) Surf Coat Technol 174–175:515–518CrossRefGoogle Scholar
  6. 6.
    Bente M, Avramidis G et al (2004) Holz Roh Werkst 62:157–163CrossRefGoogle Scholar
  7. 7.
    Mertens M, Wolkenhauer A, Viol W (2006) Laser Phys Lett 3:380–384CrossRefGoogle Scholar
  8. 8.
    Mahlberg R, Niemi HEM et al (1999) Langmuir 15:2985–2992CrossRefGoogle Scholar
  9. 9.
    Blantocas GQ, Ramos HJ, Wada M (2006) Jpn J Appl Phys 45:8498–8501CrossRefADSGoogle Scholar
  10. 10.
    Simor M, Rahel J et al (2002) Appl Phys Lett 81(15):2716–2718CrossRefADSGoogle Scholar
  11. 11.
    Bursikova V, Stahel P et al (2004) Surface energy evaluation of plasma treated materials by contact angle measurement. MU, Brno, ISBN 80-210-3563-3Google Scholar
  12. 12.
    Liu CF, Xu F et al (2006) Carbohydr Res 341(16):2677–2687CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Maria Odrášková
    • 1
  • Jozef Ráhel’
    • 1
    • 2
  • Anna Zahoranová
    • 1
  • Radovan Tiňo
    • 3
  • Mirko Černák
    • 1
    • 2
  1. 1.Department of Experimental Physics, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia
  2. 2.Institute of Physical Electronics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Chemical Technology of Wood, Pulp and PaperSlovak Technical UniversityBratislavaSlovakia

Personalised recommendations