Skip to main content
Log in

Molecular Beam Mass Spectrometry System for Characterization of Thermal Plasma Chemical Vapor Deposition

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A molecular beam mass spectrometry system for in situ measurement of the concentration of gas phase species including radicals impinging on a substrate during thermal plasma chemical vapor deposition (TPCVD) has been designed and constructed. Dynamically controlled substrate temperature was achieved using a variable thermal contact resistance method via a backside flow of an argon/helium mixture. A high quality molecular beam with beam‐to‐background signal greater than 20 was obtained under film growth conditions by sampling through a small nozzle (75 μm) in the center of the substrate. Mass discrimination effects were accounted for in order to quantify the species measurements. We demonstrate that this system has a minimum detection limit of under 100 ppb. Quantitative measurements of hydrocarbon species (H, H2, C, CH3, CH4, C2H2, C2H4) using Ar/H2/CH4 mixtures and silicon species (Si, SiH, SiH2, SiCl, SiCl2, Cl, HCl) using Ar/H2/SiCl4 mixtures were obtained under thermal plasma chemical vapor deposition conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1. J. M. Larson, M. T. Swihart, and S. L. Girshick, Diamond Relat. Mater. 8, 1863 (1999).

    Google Scholar 

  • 2. M. R. Zachariah and D. Burgess Jr., J. Aeros. Sci. 25, 487 (1994).

    Google Scholar 

  • 3. M. R. Zachariah and O. I. Smith, Combust. Flame 69, 125 (1987).

    Google Scholar 

  • 4. O. Sanogo and M. R. Zachariah, J. Electrochem. Soc. 144, 2919 (1997).

    Google Scholar 

  • 5. H. Toyoda, H. Kojima, and H. Sugai, Appl. Phys. Lett. 54, 1507 (1989).

    Google Scholar 

  • 6. W. L. Hsu and D. M. Tung, Rev. Sci. Instrum 63, 4138 (1992).

    Google Scholar 

  • 7. W. L. Hsu, M. C. McMaster, M. E. Coltrin, and D. S. Dandy, Jpn. J. Appl. Phys. 33, 2231 (1994).

    Google Scholar 

  • 8. P. G. Greuel, J. T. Roberts, and D. W. Ernie, in Proc. 12th Int. Symp. Plasma Chemistry, Minneapolis, 21–25 August, 1995, Vol. 3, p. 2209.

  • 9. F. Liao, S. Park, J. M. Larson, M. R. Zachariah, and S. L. Girshick, Mater. Lett. 57, 1982 (2003).

    Google Scholar 

  • 10. A. Kantrowitz and J. Grey, Rev. Sci. Instrum. 22, 328 (1951).

    Google Scholar 

  • 11. E. L. Knuth, Engine Emissions: Pollutant Formation and Measurement (G. S. Springer and D. J. Patterson, eds.), Plenum, New York, 1973, pp. 319–363.

    Google Scholar 

  • 12. D. R. Miller, Atomic and Molecular Beam Methods, Vol. 1 (G. Scoles, ed.), Oxford University, New York, 1988, Chap. 2.

    Google Scholar 

  • 13. M. T. Bieberich and S. L. Girshick, Plasma Chem. Plasma Process. 16, 157S (1996).

    Google Scholar 

  • 14. M. Mitchner and C. H. Kruger, Partially Ionized Gases, John Wiley & Sons, 1973, p. 112.

  • 15. J. B. Anderson, AlChE J. 13, 1188 (1967).

    Google Scholar 

  • 16. P. C. Wateraman and S. A. Stern, J. Chem. Phys. 31, 405 (1959).

    Google Scholar 

  • 17. V. H. Reist and J. B. Fenn, J. Chem. Phys. 39, 3240 (1963).

    Google Scholar 

  • 18. F. S. Sherman, Phys. Fluids 8, 773 (1965).

    Google Scholar 

  • 19. P. K. Sharma, E. L. Knuth, and W. S. Young, J. Chem. Phys. 64, 4345 (1976).

    Google Scholar 

  • 20. E. L. Knuth, Combust. Flame 103, 171 (1995).

    Google Scholar 

  • 21. J. B. Anderson, Molecular Beam and Low Density Gas Dynamics (P. P. Wegener, ed.), Dekker, New York, 1974, Chap. 1.

    Google Scholar 

  • 22. H. Ashkenas and F. S. Sherman, Rarefied Gas Dynamics, Vol. 2 (J. J. de Leeuw, ed.), Academic Press, New York, 1966, pp. 84–105.

    Google Scholar 

  • 23. S. S. Dijulio and E. L. Knuth, Rev. Sci. Instr. 55, 1154 (1984).

    Google Scholar 

  • 24. Electron-Impact Ionization Cross Sections Database, NIST, http://physics.nist.gov/PhysRefData/Ionization/Xsection.html.

  • 25. M. Probst, H. Deutsch, K. Becker, and T. D. Mark, Int. J. Mass Spectrom. Ion Proc. 206, 13 (2001).

    Google Scholar 

  • 26. Electron Collision Cross sections and Databases, http://www.cfdrc.com/~cfdplasma/NASA_coll.html.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Liao, F., Larson, J. et al. Molecular Beam Mass Spectrometry System for Characterization of Thermal Plasma Chemical Vapor Deposition. Plasma Chem Plasma Process 24, 353–372 (2004). https://doi.org/10.1007/s11090-004-2273-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-004-2273-1

Keywords

Navigation