Advertisement

Plasma Chemistry and Plasma Processing

, Volume 24, Issue 3, pp 353–372 | Cite as

Molecular Beam Mass Spectrometry System for Characterization of Thermal Plasma Chemical Vapor Deposition

  • Soonam Park
  • Feng Liao
  • John M. Larson
  • Steven L. Girshick
  • Michael R. Zachariah
Article

Abstract

A molecular beam mass spectrometry system for in situ measurement of the concentration of gas phase species including radicals impinging on a substrate during thermal plasma chemical vapor deposition (TPCVD) has been designed and constructed. Dynamically controlled substrate temperature was achieved using a variable thermal contact resistance method via a backside flow of an argon/helium mixture. A high quality molecular beam with beam‐to‐background signal greater than 20 was obtained under film growth conditions by sampling through a small nozzle (75 μm) in the center of the substrate. Mass discrimination effects were accounted for in order to quantify the species measurements. We demonstrate that this system has a minimum detection limit of under 100 ppb. Quantitative measurements of hydrocarbon species (H, H2, C, CH3, CH4, C2H2, C2H4) using Ar/H2/CH4 mixtures and silicon species (Si, SiH, SiH2, SiCl, SiCl2, Cl, HCl) using Ar/H2/SiCl4 mixtures were obtained under thermal plasma chemical vapor deposition conditions.

Keywords

Thermal plasma chemical vapor deposition mass spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. J. M. Larson, M. T. Swihart, and S. L. Girshick, Diamond Relat. Mater. 8, 1863 (1999).Google Scholar
  2. 2. M. R. Zachariah and D. Burgess Jr., J. Aeros. Sci. 25, 487 (1994).Google Scholar
  3. 3. M. R. Zachariah and O. I. Smith, Combust. Flame 69, 125 (1987).Google Scholar
  4. 4. O. Sanogo and M. R. Zachariah, J. Electrochem. Soc. 144, 2919 (1997).Google Scholar
  5. 5. H. Toyoda, H. Kojima, and H. Sugai, Appl. Phys. Lett. 54, 1507 (1989).Google Scholar
  6. 6. W. L. Hsu and D. M. Tung, Rev. Sci. Instrum 63, 4138 (1992).Google Scholar
  7. 7. W. L. Hsu, M. C. McMaster, M. E. Coltrin, and D. S. Dandy, Jpn. J. Appl. Phys. 33, 2231 (1994).Google Scholar
  8. 8. P. G. Greuel, J. T. Roberts, and D. W. Ernie, in Proc. 12th Int. Symp. Plasma Chemistry, Minneapolis, 21–25 August, 1995, Vol. 3, p. 2209.Google Scholar
  9. 9. F. Liao, S. Park, J. M. Larson, M. R. Zachariah, and S. L. Girshick, Mater. Lett. 57, 1982 (2003).Google Scholar
  10. 10. A. Kantrowitz and J. Grey, Rev. Sci. Instrum. 22, 328 (1951).Google Scholar
  11. 11. E. L. Knuth, Engine Emissions: Pollutant Formation and Measurement (G. S. Springer and D. J. Patterson, eds.), Plenum, New York, 1973, pp. 319–363.Google Scholar
  12. 12. D. R. Miller, Atomic and Molecular Beam Methods, Vol. 1 (G. Scoles, ed.), Oxford University, New York, 1988, Chap. 2.Google Scholar
  13. 13. M. T. Bieberich and S. L. Girshick, Plasma Chem. Plasma Process. 16, 157S (1996).Google Scholar
  14. 14. M. Mitchner and C. H. Kruger, Partially Ionized Gases, John Wiley & Sons, 1973, p. 112.Google Scholar
  15. 15. J. B. Anderson, AlChE J. 13, 1188 (1967).Google Scholar
  16. 16. P. C. Wateraman and S. A. Stern, J. Chem. Phys. 31, 405 (1959).Google Scholar
  17. 17. V. H. Reist and J. B. Fenn, J. Chem. Phys. 39, 3240 (1963).Google Scholar
  18. 18. F. S. Sherman, Phys. Fluids 8, 773 (1965).Google Scholar
  19. 19. P. K. Sharma, E. L. Knuth, and W. S. Young, J. Chem. Phys. 64, 4345 (1976).Google Scholar
  20. 20. E. L. Knuth, Combust. Flame 103, 171 (1995).Google Scholar
  21. 21. J. B. Anderson, Molecular Beam and Low Density Gas Dynamics (P. P. Wegener, ed.), Dekker, New York, 1974, Chap. 1.Google Scholar
  22. 22. H. Ashkenas and F. S. Sherman, Rarefied Gas Dynamics, Vol. 2 (J. J. de Leeuw, ed.), Academic Press, New York, 1966, pp. 84–105.Google Scholar
  23. 23. S. S. Dijulio and E. L. Knuth, Rev. Sci. Instr. 55, 1154 (1984).Google Scholar
  24. 24. Electron-Impact Ionization Cross Sections Database, NIST, http://physics.nist.gov/PhysRefData/Ionization/Xsection.html.Google Scholar
  25. 25. M. Probst, H. Deutsch, K. Becker, and T. D. Mark, Int. J. Mass Spectrom. Ion Proc. 206, 13 (2001).Google Scholar
  26. 26. Electron Collision Cross sections and Databases, http://www.cfdrc.com/~cfdplasma/NASA_coll.html.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Soonam Park
    • 1
  • Feng Liao
    • 1
  • John M. Larson
    • 2
  • Steven L. Girshick
    • 3
  • Michael R. Zachariah
    • 4
  1. 1.Department of Mechanical Engineering
  2. 2.Department of Mechanical Engineering
  3. 3.Department of Mechanical Engineering
  4. 4.Department of Mechanical Engineering

Personalised recommendations