Advertisement

Oxidation of Metals

, Volume 89, Issue 1–2, pp 123–139 | Cite as

ToF-SIMS Study on the Initial Stages of the Halogen Effect in the Oxidation of TiAl Alloys

  • S. Friedle
  • R. Pflumm
  • A. Seyeux
  • P. Marcus
  • M. Schütze
Original Paper

Abstract

Intermetallic titanium aluminide samples implanted with fluorine using plasma immersion ion implantation were investigated after high-temperature exposure for short times at 500 and 900 °C in air by ToF-SIMS as a surface analytical method. The ToF-SIMS method was applied in order to obtain information regarding the location of fluorine with respect to the oxide layer formed and the substrate after ion implantation and after high-temperature exposure, respectively. The aim of the present work was to obtain further insight into the mechanisms active during the initial stages of oxidation. The scale structure in the initial oxidation phase consists of titanium and aluminum oxides/fluorides/oxyfluorides. The arrangement of their layered structure can be interpreted according to their thermodynamic stabilities in the partial pressure gradient of oxygen over the scale and according to the metal activities and the presence of fluorine at the metal/scale interface.

Keywords

Titanium aluminides Halogen effect Oxidation ToF-SIMS 

Notes

Acknowledgements

The authors would like to thank Dr. Rossen Yankov at Helmholtz-Zentrum Dresden-Rossendorf for performing the implantation experiments. Furthermore, thanks are due to Dr. Alexander Donchev from DECHEMA-Forschungsinstitut for the thermodynamic calculations in Table 1. Funding was provided by Deutsche Forschungsgemeinschaft.

References

  1. 1.
    B. Bewlay, M. Weimer, T. Kelly, A. Suzuki and P. R. Subramanian, in MRS Symposium Proceedings, vol. 1516, eds. I. Baker, M. Heilmaier, S. Kumar and K. Yoshimi (Cambridge University Press, Cambridge, 2013), p. 49.Google Scholar
  2. 2.
    R. R. Boyer and J. C. Williams, in Titanium 2011 Proceedings, eds. L. Zhou, H. Chang, J. Lu and D. Xu (Science Press, Beijing, 2012), p. 10.Google Scholar
  3. 3.
    H. Clemens and S. Mayer, Advanced Engineering Materials 15, 191 (2013).CrossRefGoogle Scholar
  4. 4.
    H. Clemens, M. Schloffer, E. Schwaighofer, R. Werner, A. Geitzenauer, B. Rashkova, R. Pippan and S. Mayer, in MRS Symposium Proceedings, vol. 1516, eds. I. Baker, M. Heilmaier, S. Kumar and K. Yoshimi (Cambridge University Press, Cambridge, 2013), p. 3.Google Scholar
  5. 5.
    J. W. Fergus, Materials Science and Engineering A 338, 108 (2002).CrossRefGoogle Scholar
  6. 6.
    T. Tetsui and S. Ono, Intermetallics 7, 689 (1999).CrossRefGoogle Scholar
  7. 7.
    P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, London and New York, 1988).Google Scholar
  8. 8.
    A. Rahmel, W. J. Quadakkers and M. Schütze, Materials and Corrosion 46, 271 (1995).CrossRefGoogle Scholar
  9. 9.
    C. Lang and M. Schütze, Oxidation of Metals 46, 255 (1996).CrossRefGoogle Scholar
  10. 10.
    C. Lang and M. Schütze, Materials and Corrosion 48, 13 (1997).CrossRefGoogle Scholar
  11. 11.
    J. M. Rakowski, F. S. Pettit, G. H. Meier, F. Dettenwanger, E. Schumann and M. Rühle, Scripta Metallurgica et Materialia 33, 997 (1995).CrossRefGoogle Scholar
  12. 12.
    F. Appel, J. D. H. Paul and M. Oehring, in Gamma Titanium Aluminide Alloys: Science and Technology, Chapter 12, eds. F. Appel, J. David, H. Paul and M. Oehring (Wiley-VCH, Weinheim, 2011), p. 433.CrossRefGoogle Scholar
  13. 13.
    C. Leyens, in Titanium and Titanium Alloys: Fundamentals and Applications, Chapter 6, eds. C. Leyens and M. Peters (Wiley, Weinheim, 2003), p. 187.CrossRefGoogle Scholar
  14. 14.
    R. Pflumm, S. Friedle and M. Schütze, Intermetallics 56, 1 (2015).CrossRefGoogle Scholar
  15. 15.
    A. Donchev, B. Gleeson and M. Schütze, Intermetallics 11, 387 (2003).CrossRefGoogle Scholar
  16. 16.
    M. Schütze and S. Friedle, in MRS Symposium Proceedings, eds. I. Baker, M. Heilmaier, S. Kumar and K. Yoshimi (Cambridge University Press, Cambridge, 2013), p. 77.Google Scholar
  17. 17.
    Y. F. Cheng, F. Dettenwanger, J. Mayer, E. Schumann, and M. Rühle, Scripta Materialia 34, 707 (1996).CrossRefGoogle Scholar
  18. 18.
    S. Nourbakhsh, O. Sahin and H. Margonlin, Acta Metallurgica et Materialia 43, 3035 (1995).CrossRefGoogle Scholar
  19. 19.
    W. E. Dowling and W. T. Donlon, Scripta Metallurgica et Materialia 27, 1663 (1992).CrossRefGoogle Scholar
  20. 20.
    W. T. Donlon and W. E. Dowling, Materials Research Society Symposia Proceedings 288, 629 (1993).CrossRefGoogle Scholar
  21. 21.
    N. Zheng, W. Fischer, H. Grübmeier, V. Shemet and W. J. Quadakkers, Scripta Metallurgia et Materialia 33, 47 (1995).CrossRefGoogle Scholar
  22. 22.
    M. Schmiedgen, P. C. J. Graat, B. Baretzky and E. J. Mittemeijer, Thin Solid Films 415, 114–122 (2002).CrossRefGoogle Scholar
  23. 23.
    H.-E. Zschau, V. Gauthier, G. Schumacher, F. Dettenwanger, M. Schütze, H. Baumann, K. Bethge and M. Graham, Oxidation of Metals 59, 183 (2003).CrossRefGoogle Scholar
  24. 24.
    R. A. Yankov, N. Shevchenko, A. Rogozin, M. F. Maitz, E. Richter, W. Möller, A. Donchev and M. Schütze, Surface and Coatings Technology 201, 6752 (2007).CrossRefGoogle Scholar
  25. 25.
    R. A. Yankov, A. Kolitsch, J. von Borany, A. Mücklich, F. Munnik, A. Donchev and M. Schütze, Surface and Coatings Technology 206, 3595 (2012).CrossRefGoogle Scholar
  26. 26.
    R. A. Yankov, A. Kolitsch, J. von Borany, F. Munnik, S. Gemming, A. Alexewicz, H. Bracht, H. Rösner, A. Donchev and M. Schütze, Advanced Engineering Materials 16, 52 (2014).CrossRefGoogle Scholar
  27. 27.
    G. Schumacher, F. Dettenwanger, M. Schütze, U. Hornauer, E. Richter, E. Wieser and W. Möller, Intermetallics 7, 1113 (1999).CrossRefGoogle Scholar
  28. 28.
    A. Donchev, E. Richter, M. Schütze and R. Yankov, Journal of Alloys and Compounds 452, 7 (2008).CrossRefGoogle Scholar
  29. 29.
    P. Masset, H.-E. Zschau, S. Neve, and M. Schütze, in Ti-2007 Science and Technology, Proceedings of the 11th World Conference on Titanium (JIMIC5), Kyoto, Japan, 3–7 June 2007, eds. M. Ninomi, S. Akiyama, M. Ikeda, M. Hagiwara, and K. Maruyama, Vol. 6 (2007).Google Scholar
  30. 30.
    H.-E. Zschau, M. Schütze, H. Baumann and K. Bethge, Nuclear Instruments and Methods in Physics Research B 240, 137 (2005).CrossRefGoogle Scholar
  31. 31.
    S. Becker, A. Rahmel, M. Schorr and M. Schütze, Oxidation of Metals 38, 425 (1992).CrossRefGoogle Scholar
  32. 32.
    A. Donchev, H.-E. Zschau and M. Schütze, Materials at High Temperatures 22, 309 (2005).CrossRefGoogle Scholar
  33. 33.
    S. Neve, P. Masset, R. Yankov, A. Kolitsch, H.-E. Zschau and M. Schütze, Nuclear Instruments and Methods in Physics Research B 268, 3381 (2010).CrossRefGoogle Scholar
  34. 34.
    S. Neve, K. Stiebing, L. P. H. Schmidt, H.-E. Zschau, P. J. Masset and M. Schütze, Materials Science Forum 638–642, 1389 (2010).Google Scholar
  35. 35.
    A. A. Kodentsov, M. R. Rijnders and F. J. J. Van Loo, Acta Materialia 46, 6521 (1998).CrossRefGoogle Scholar
  36. 36.
    C. R. Kao and Y. A. Chang, Acta Metallurgica et Materialia 41, 3463 (1993).CrossRefGoogle Scholar
  37. 37.
    T. C. Chou, Journal of Materials Research 5, 378 (1990).CrossRefGoogle Scholar
  38. 38.
    A. Rahmel and P. J. Spencer, Oxidation of Metals 35, 53 (1991).CrossRefGoogle Scholar
  39. 39.
    H.-E. Zschau, M. Schütze, H. Baumann and K. Bethge, Material Science Forum 461–464, 505 (2004).CrossRefGoogle Scholar
  40. 40.
    G. Schumacher, F. Dettenwanger and M. Schütze, Materials at High Temperatures 17, 53 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • S. Friedle
    • 1
  • R. Pflumm
    • 1
  • A. Seyeux
    • 2
  • P. Marcus
    • 2
  • M. Schütze
    • 1
  1. 1.DECHEMA-ForschungsinstitutFrankfurt am MainGermany
  2. 2.CNRS – Chimie ParisTechPSL Research University Institut de Recherche de Chimie Paris/Physical Chemistry of Surfaces GroupParisFrance

Personalised recommendations