Skip to main content
Log in

ToF-SIMS Study on the Initial Stages of the Halogen Effect in the Oxidation of TiAl Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Intermetallic titanium aluminide samples implanted with fluorine using plasma immersion ion implantation were investigated after high-temperature exposure for short times at 500 and 900 °C in air by ToF-SIMS as a surface analytical method. The ToF-SIMS method was applied in order to obtain information regarding the location of fluorine with respect to the oxide layer formed and the substrate after ion implantation and after high-temperature exposure, respectively. The aim of the present work was to obtain further insight into the mechanisms active during the initial stages of oxidation. The scale structure in the initial oxidation phase consists of titanium and aluminum oxides/fluorides/oxyfluorides. The arrangement of their layered structure can be interpreted according to their thermodynamic stabilities in the partial pressure gradient of oxygen over the scale and according to the metal activities and the presence of fluorine at the metal/scale interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Bewlay, M. Weimer, T. Kelly, A. Suzuki and P. R. Subramanian, in MRS Symposium Proceedings, vol. 1516, eds. I. Baker, M. Heilmaier, S. Kumar and K. Yoshimi (Cambridge University Press, Cambridge, 2013), p. 49.

    Google Scholar 

  2. R. R. Boyer and J. C. Williams, in Titanium 2011 Proceedings, eds. L. Zhou, H. Chang, J. Lu and D. Xu (Science Press, Beijing, 2012), p. 10.

    Google Scholar 

  3. H. Clemens and S. Mayer, Advanced Engineering Materials 15, 191 (2013).

    Article  Google Scholar 

  4. H. Clemens, M. Schloffer, E. Schwaighofer, R. Werner, A. Geitzenauer, B. Rashkova, R. Pippan and S. Mayer, in MRS Symposium Proceedings, vol. 1516, eds. I. Baker, M. Heilmaier, S. Kumar and K. Yoshimi (Cambridge University Press, Cambridge, 2013), p. 3.

    Google Scholar 

  5. J. W. Fergus, Materials Science and Engineering A 338, 108 (2002).

    Article  Google Scholar 

  6. T. Tetsui and S. Ono, Intermetallics 7, 689 (1999).

    Article  Google Scholar 

  7. P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, London and New York, 1988).

    Google Scholar 

  8. A. Rahmel, W. J. Quadakkers and M. Schütze, Materials and Corrosion 46, 271 (1995).

    Article  Google Scholar 

  9. C. Lang and M. Schütze, Oxidation of Metals 46, 255 (1996).

    Article  Google Scholar 

  10. C. Lang and M. Schütze, Materials and Corrosion 48, 13 (1997).

    Article  Google Scholar 

  11. J. M. Rakowski, F. S. Pettit, G. H. Meier, F. Dettenwanger, E. Schumann and M. Rühle, Scripta Metallurgica et Materialia 33, 997 (1995).

    Article  Google Scholar 

  12. F. Appel, J. D. H. Paul and M. Oehring, in Gamma Titanium Aluminide Alloys: Science and Technology, Chapter 12, eds. F. Appel, J. David, H. Paul and M. Oehring (Wiley-VCH, Weinheim, 2011), p. 433.

    Chapter  Google Scholar 

  13. C. Leyens, in Titanium and Titanium Alloys: Fundamentals and Applications, Chapter 6, eds. C. Leyens and M. Peters (Wiley, Weinheim, 2003), p. 187.

    Chapter  Google Scholar 

  14. R. Pflumm, S. Friedle and M. Schütze, Intermetallics 56, 1 (2015).

    Article  Google Scholar 

  15. A. Donchev, B. Gleeson and M. Schütze, Intermetallics 11, 387 (2003).

    Article  Google Scholar 

  16. M. Schütze and S. Friedle, in MRS Symposium Proceedings, eds. I. Baker, M. Heilmaier, S. Kumar and K. Yoshimi (Cambridge University Press, Cambridge, 2013), p. 77.

    Google Scholar 

  17. Y. F. Cheng, F. Dettenwanger, J. Mayer, E. Schumann, and M. Rühle, Scripta Materialia 34, 707 (1996).

    Article  Google Scholar 

  18. S. Nourbakhsh, O. Sahin and H. Margonlin, Acta Metallurgica et Materialia 43, 3035 (1995).

    Article  Google Scholar 

  19. W. E. Dowling and W. T. Donlon, Scripta Metallurgica et Materialia 27, 1663 (1992).

    Article  Google Scholar 

  20. W. T. Donlon and W. E. Dowling, Materials Research Society Symposia Proceedings 288, 629 (1993).

    Article  Google Scholar 

  21. N. Zheng, W. Fischer, H. Grübmeier, V. Shemet and W. J. Quadakkers, Scripta Metallurgia et Materialia 33, 47 (1995).

    Article  Google Scholar 

  22. M. Schmiedgen, P. C. J. Graat, B. Baretzky and E. J. Mittemeijer, Thin Solid Films 415, 114–122 (2002).

    Article  Google Scholar 

  23. H.-E. Zschau, V. Gauthier, G. Schumacher, F. Dettenwanger, M. Schütze, H. Baumann, K. Bethge and M. Graham, Oxidation of Metals 59, 183 (2003).

    Article  Google Scholar 

  24. R. A. Yankov, N. Shevchenko, A. Rogozin, M. F. Maitz, E. Richter, W. Möller, A. Donchev and M. Schütze, Surface and Coatings Technology 201, 6752 (2007).

    Article  Google Scholar 

  25. R. A. Yankov, A. Kolitsch, J. von Borany, A. Mücklich, F. Munnik, A. Donchev and M. Schütze, Surface and Coatings Technology 206, 3595 (2012).

    Article  Google Scholar 

  26. R. A. Yankov, A. Kolitsch, J. von Borany, F. Munnik, S. Gemming, A. Alexewicz, H. Bracht, H. Rösner, A. Donchev and M. Schütze, Advanced Engineering Materials 16, 52 (2014).

    Article  Google Scholar 

  27. G. Schumacher, F. Dettenwanger, M. Schütze, U. Hornauer, E. Richter, E. Wieser and W. Möller, Intermetallics 7, 1113 (1999).

    Article  Google Scholar 

  28. A. Donchev, E. Richter, M. Schütze and R. Yankov, Journal of Alloys and Compounds 452, 7 (2008).

    Article  Google Scholar 

  29. P. Masset, H.-E. Zschau, S. Neve, and M. Schütze, in Ti-2007 Science and Technology, Proceedings of the 11th World Conference on Titanium (JIMIC5), Kyoto, Japan, 3–7 June 2007, eds. M. Ninomi, S. Akiyama, M. Ikeda, M. Hagiwara, and K. Maruyama, Vol. 6 (2007).

  30. H.-E. Zschau, M. Schütze, H. Baumann and K. Bethge, Nuclear Instruments and Methods in Physics Research B 240, 137 (2005).

    Article  Google Scholar 

  31. S. Becker, A. Rahmel, M. Schorr and M. Schütze, Oxidation of Metals 38, 425 (1992).

    Article  Google Scholar 

  32. A. Donchev, H.-E. Zschau and M. Schütze, Materials at High Temperatures 22, 309 (2005).

    Article  Google Scholar 

  33. S. Neve, P. Masset, R. Yankov, A. Kolitsch, H.-E. Zschau and M. Schütze, Nuclear Instruments and Methods in Physics Research B 268, 3381 (2010).

    Article  Google Scholar 

  34. S. Neve, K. Stiebing, L. P. H. Schmidt, H.-E. Zschau, P. J. Masset and M. Schütze, Materials Science Forum 638–642, 1389 (2010).

    Google Scholar 

  35. A. A. Kodentsov, M. R. Rijnders and F. J. J. Van Loo, Acta Materialia 46, 6521 (1998).

    Article  Google Scholar 

  36. C. R. Kao and Y. A. Chang, Acta Metallurgica et Materialia 41, 3463 (1993).

    Article  Google Scholar 

  37. T. C. Chou, Journal of Materials Research 5, 378 (1990).

    Article  Google Scholar 

  38. A. Rahmel and P. J. Spencer, Oxidation of Metals 35, 53 (1991).

    Article  Google Scholar 

  39. H.-E. Zschau, M. Schütze, H. Baumann and K. Bethge, Material Science Forum 461–464, 505 (2004).

    Article  Google Scholar 

  40. G. Schumacher, F. Dettenwanger and M. Schütze, Materials at High Temperatures 17, 53 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Rossen Yankov at Helmholtz-Zentrum Dresden-Rossendorf for performing the implantation experiments. Furthermore, thanks are due to Dr. Alexander Donchev from DECHEMA-Forschungsinstitut for the thermodynamic calculations in Table 1. Funding was provided by Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schütze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedle, S., Pflumm, R., Seyeux, A. et al. ToF-SIMS Study on the Initial Stages of the Halogen Effect in the Oxidation of TiAl Alloys. Oxid Met 89, 123–139 (2018). https://doi.org/10.1007/s11085-017-9779-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9779-4

Keywords

Navigation