Isotope Chirality and Asymmetric Autocatalysis: A Possible Entry to Biological Chirality

  • Béla Barabás
  • Luciano Caglioti
  • Károly Micskei
  • Claudia Zucchi
  • Gyula Pályi


Natural-abundance isotopic substitution in isotopically prochiral groups of otherwise achiral molecules can provide stochastically formed enantiomeric excesses which exceed the sensitivity threshold of sensitive asymmetric autocatalytic (Soai-type) reactions. This kind of induction of chirality should be taken into consideration in in vitro model experiments and offer a new kind of entry into primary prebiotic or early biotic enantioselection in the earliest stages of molecular evolution.


Autocatalysis Asymmetric Biological chirality Chirality by isotopes Isotopes Natural abundance Soai-reaction 



Support of the present research is acknowledged to the Italian Ministry of University and Research (Contract No. RBPR05NWWC). The authors acknowledge with thanks the advice of an anonymous Referee and discussions with Profs. I. Shiina and K. Soai (Tokyo).


  1. Arigoni D, Eliel E (1969) Chirality due to the presence of hydrogen isotopes in noncyclic positions. Top Stereochem 4:127–243CrossRefGoogle Scholar
  2. Avalos M, Babiano R, Cintas P, Jimenez JL, Palacios JC, Barron LD (1998) Absolute asymmetric synthesis under physical fields: facts and fictions. Chem Rev 98:2391–2404PubMedCrossRefGoogle Scholar
  3. Avetisov VA (2002) Emergence of biomolecular homochirality: complexity, hierarchicity and dynamics. In: Palyi G, Zucchi C, Caglioti L (eds) Fundamentals of life. Elsevier, Paris, pp 361–367Google Scholar
  4. Avetisov VA, Goldanskii VI (1996) Mirror symmetry breaking at the molecular level. Proc Natl Acad Sci USA 93:11435–11442PubMedCrossRefGoogle Scholar
  5. Barth G, Djerassi C (1981) Circular dichroism of molecules with isotopically engendered chirality. Tetrahedron 37:4123–4142CrossRefGoogle Scholar
  6. Battersby AR (1985) Enzymic synthesis of isotopically labeled substances. Ciba Found Symp 111:22–30 Enzymes Org SynthPubMedGoogle Scholar
  7. Berger L, Laubender G, Quack M, Sieben A, Stohner J, Willeke M (2005) Isotopic chirality and molecular parity violation. Angew Chem Int Ed Engl 44:3623–3626PubMedCrossRefGoogle Scholar
  8. Blackmond DG, Matar OK (2008) Re-examination of reversibility in reaction models for the spontaneous emergence of homochirality. J Phys Chem B 112:5098–5104PubMedCrossRefGoogle Scholar
  9. Bottinga Y (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–carbon dioxide–graphite–methane–hydrogen–water vapor. Geochim Cosmochim Acta 33:49–64CrossRefGoogle Scholar
  10. Bredig G, Mangold P, Williams TG (1923) Absolute asymmetric synthesis. Z Angew Chem 36:456–458Google Scholar
  11. Bushman H, Thede R, Setter D (2000) New developments in the origins of the homochirality of biologically relevant molecules. Angew Chem Int Ed 39:4033–4036CrossRefGoogle Scholar
  12. Caglioti L, Zucchi C, Palyi G (2005) Single-molecule chirality. Chem Today 23(5):38–43Google Scholar
  13. Caglioti L, Hajdu C, Holczknecht O, Zekany L, Zucchi C, Micskei K, Palyi G (2006a) The concept of racemates and the Soai reaction. Viva Orig 34:62–80Google Scholar
  14. Caglioti L, Holczknecht O, Fujii N, Zucchi C, Palyi G (2006b) Astrobiology and biological chirality. Orig Life Evol Biosph 36:459–466PubMedCrossRefGoogle Scholar
  15. Caglioti L, Micskei K, Palyi G (2007) Chirality of the very first molecule in absolute enantioselective synthesis. Viva Orig 35:82–84Google Scholar
  16. Cline DB (ed) (1996) Physical origin of the homochirality of life. AIP, Woodburg (NY, USA)Google Scholar
  17. Compton RN, Pagni RM (2002) Chirality of biomolecules. Adv At Mol Opt Phys 48:219–261Google Scholar
  18. Feringa BL, van Delden RA (1999) Absolute asymmetric synthesis: the origin, control and amplification of chirality. Angew Chem Int Ed 38:3418–3438CrossRefGoogle Scholar
  19. Frank FC (1953) On spontaneous asymmetric synthesis. Biochim Biophys Acta 11:459–463PubMedCrossRefGoogle Scholar
  20. Fujii N, Saito T (2004) Homochirality and life. Chem Rec 4:267–278PubMedCrossRefGoogle Scholar
  21. Galimov EM (1971) On the relationship of the fractionation coefficient of isotopes to the equilibrium constants of the isotope exchange reactions of carbon in hydrocarbon systems. Zh Fiz Khim 45:118701191Google Scholar
  22. Galimov EM (1985) The biological fractionation of isotopes. Academic, New YorkGoogle Scholar
  23. Galimov EM (2004) Phenomenon of life: between equilibrium and non-linearity. Orig Life Evol Biosph 34:599–613PubMedCrossRefGoogle Scholar
  24. Galimov EM (2006a) Phenomenon of life: between equilibrium and non-linearity. Origin and principles of evolution. Geochem Int 44(Suppl. 1):S1–S95CrossRefGoogle Scholar
  25. Galimov EM (2006b) Isotope organic geochemistry. Org Geochem 37:1200–1262CrossRefGoogle Scholar
  26. Galimov EM, Polyakov VB (1990) On thermodynamically ordered distribution of isotopes of carbon in biogenic geochemical objects. Geokhimiya 9:1232–1240Google Scholar
  27. Green MM, Park J-W, Sato T, Takahiro T, Teramoto A, Lifson S, Selinger RLB, Selinger JV (1999) The macromolecular route to chiral amplification. Angew Chem Int Ed 38:3139–3154Google Scholar
  28. Griffith H (ed) (1998) Stable isotopes. BIOS Sci Publisher Ltd, Oxford (GB)Google Scholar
  29. Kawasaki T, Suzuki K, Shimizu M, Ishikawa K, Soai K (2006a) Spontaneous absolute asymmetric synthesis in the presence of achiral silica gel in conjunction with asymmetric autocatalysis. Chirality 18:479–482PubMedCrossRefGoogle Scholar
  30. Kawasaki T, Tanaka H, Tsutsumi T, Kasahara I, Sato I, Soai K (2006b) Chiral discrimination of cryptochiral saturated quaternary and tertiary hydrocarbons by asymmetric autocatalysis. J Am Chem Soc 128:6032–6033PubMedCrossRefGoogle Scholar
  31. Keszthelyi L (1995) Origin of the homochirality of biomolecules. Quart Rev Biophys 28:473–507CrossRefGoogle Scholar
  32. Kondepudi DK, Asakura K (2001) Chiral autocatalysis, spontaneous symmetry breaking and stochastic behaviour. Acc Chem Res 34:946–954PubMedCrossRefGoogle Scholar
  33. Lutz F, Sato I, Soai K (2004) The asymmetric power of chiral ligands determined by competitive asymmetric autocatalysis. Org Lett 6:1613–1616PubMedCrossRefGoogle Scholar
  34. Lutz F, Igarashi T, Kawasaki T, Soai K (2005) Small amounts of achiral beta-amino alcohols reverse the enantioselectivity of chiral catalysts in cooperative asymmetric autocatalysis. J Am Chem Soc 127:12206–12207PubMedCrossRefGoogle Scholar
  35. Micskei K, Maioli M, Zucchi C, Caglioti L, Palyi G (2006a) Generalization possibilities of autocatalytic absolute enantioselective synthesis. Tetrahedron Asymmetry 17:2960–2962CrossRefGoogle Scholar
  36. Micskei K, Pota G, Caglioti L, Palyi G (2006b) Empirical description of chiral autocatalysis. J Phys Chem A 110:5982–5984PubMedCrossRefGoogle Scholar
  37. Mills WH (1932) Some aspects of stereochemistry. Chem Ind (Lond) 750–759Google Scholar
  38. Mislow K (2003) Absolute asymmetric synthesis. A commentary. Coll Czech Chem Commun 68:849–864CrossRefGoogle Scholar
  39. Mislow K, Bickart P (1976/1977) An epistemological note on chirality. Isr J Chem 15:1–6Google Scholar
  40. Nakashima S, Muruyama S, Brack A, Widley BF (eds) (2001) Geochemistry and the origin of life. Universal Academy Press, TokyoGoogle Scholar
  41. Pályi G, Zucchi C, Caglioti L (eds) (1999) Advances in biochirality. Elsevier, AmsterdamGoogle Scholar
  42. Pályi G, Micskei K, Bencze L, Zucchi C (2003) Biological chirality. Magy Kem Lapja 58:218–223Google Scholar
  43. Pályi G, Zucchi C, Caglioti L (eds) (2004) Progress in biological chirality. Elsevier, Oxford (GB)Google Scholar
  44. Pályi G, Micskei K, Zekany L, Zucchi C, Caglioti L (2005) Racemates and the Soai reaction. Magy Kem Lapja 60:17–24Google Scholar
  45. Pizzarello S, Huang Y, Fuller M (2004) The carbon isotopic distribution of Murchinson amino acids. Geochim Cosmochim Acta 68:4963–4969CrossRefGoogle Scholar
  46. Potter BVL, Connolly BA, Eckstein F (1983) Synthesis and configurational analysis of a nucleoside phosphate isotopically chiral at phosphorus. Stereochemical course of Penicillium citrinum nuclease P1 reaction. Biochemistry 22:1369–1377PubMedCrossRefGoogle Scholar
  47. Pracejus H (1966) Steric isotope effect as cause of a catalytic asymmetric synthesis. Tetrahedron Lett 32:3809–3813CrossRefGoogle Scholar
  48. Reimann J (1989) Mathematical statistics with application in flood hydrology. Akademiai Kiadó, BudapestGoogle Scholar
  49. Rényi A (1970) Probability theory. Akadémiai Kiadó, BudapestGoogle Scholar
  50. Sato I, Omiya D, Saito T, Soai K (2000) Highly enantioselective synthesis induced by chiral primary alcohols due to deuterium substitution. J Am Chem Soc 122:11739–11740CrossRefGoogle Scholar
  51. Sato I, Urabe H, Ishiguro S, Shibata T, Soai K (2003) Amplification of chirality from extremely low level to greater than 99.5% ee. Angew Chem Int Ed 42:315–317CrossRefGoogle Scholar
  52. Sato I, Ohgo Y, Igarashi H, Nishiyama D, Kawasaki T, Soai K (2007) Determination of absolute configurations of amino acids by asymmetric autocatalysis of 2-alkynylpyrimidyl alkanol as a chiral sensor. J Organomet Chem 692:1783–1787CrossRefGoogle Scholar
  53. Schidlowski M (2002) Sedimentary carbon isotope archives as recorders of early life: implications for extraterrestrial scenarios. In: Palyi G, Zucchi C, Caglioti L (eds) Fundamentals of life. Elsevier, Paris, pp 307–329Google Scholar
  54. Schmidt H-L (2003) Fundamentals and systematics of the non-statistical distribution of isotopes in natural compounds. Naturwissenschaften 90:537–552PubMedCrossRefGoogle Scholar
  55. Schmidt H-L, Werner RA, Eisenreich W (2003) Systematics of 2H patterns in natural organic compounds and its importance to elucidation of biosynthetic pathways. Phytochem Rev 2:61–85CrossRefGoogle Scholar
  56. Singleton DA, Vo LK (2002) Commentary on enantioselective synthesis without discrete optically active additives. J Am Chem Soc 124:10010–10011PubMedCrossRefGoogle Scholar
  57. Singleton DA, Vo LK (2003) A few molecules can control enantiomeric outcome. Evidence supporting absolute enantioselective synthesis using the Soai asymmetric autocatalysis. Org Lett 5:4337–4339PubMedCrossRefGoogle Scholar
  58. Soai K (2002) Asymmetric autocatalysis and the origin of chiral homogeneity of biologically relevant molecules. In: Palyi G, Zucchi C, Caglioti L (eds) Fundamentals of life. Elsevier, Paris, pp 427–435Google Scholar
  59. Soai K, Sato I (2001) Application of asymmetric autocatalysis to the determination of absolute configurations of amino acids with low enantiomeric excesses. Enantiomer 6:189–192PubMedGoogle Scholar
  60. Soai K, Sato I (2002) Asymmetric autocatalysis and the homochirality of biomolecules. Viva Orig 30:186–198Google Scholar
  61. Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and the amplification of enantiomeric excess of a chiral molecule. Nature 378:767–768CrossRefGoogle Scholar
  62. Soai K, Sato I, Shibata T, Komiya S, Hayashi M, Matsueda Y, Imamura H, Hayase T, Morioka H, Tabira H, Yamamoto J, Kowata Y (2003) Asymmetric synthesis of pyrimidyl alkanol without adding chiral substances by the addition of diisopropylzinc to pyrimidine-5-carboxaldehyde in conjunction with asymmetric synthesis. Tetrahedron Asymmetry 14:185–188CrossRefGoogle Scholar
  63. Soai K, Shibata T, Sato I (2004) Discovery and development of chiral autocatalysis. Bull Chem Soc Japan 77:1063–1073CrossRefGoogle Scholar
  64. Stevens SM Jr, Prokai-Tatrai K, Prokai L (2005) Screening of combinatorial libraries for substrate preference by mass spectrometry. Anal Chem 77:698–701CrossRefGoogle Scholar
  65. Tcherkez G, Farquhar GD (2005) Carbon isotope effect predictions for enzymes involved in the primary carbon metabolism of plant leaves. Funct Plant Biol 32:277–291CrossRefGoogle Scholar
  66. Urey HG (1947) The thermodynamic properties of isotopic substances. J Chem Soc 562–581Google Scholar
  67. Verbit L (1970) Optically active deuterium compounds. Prog Phys Org Chem 7:51–127CrossRefGoogle Scholar
  68. Weast RC (ed) (1989/1990) Handbook of Chemistry and Physics. CRC, Boca Raton (FL, USA), table of isotopes, pp. B227–B448Google Scholar
  69. Wong JT-F, Xue H (2002) Self-perfecting evolution of heteropolymer building blocks and sequences as the basis of life. In: Pályi G, Zucchi C, Caglioti L (eds) Fundamentals of life. Elsevier, Paris, pp 473–494Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Béla Barabás
    • 1
  • Luciano Caglioti
    • 2
  • Károly Micskei
    • 3
  • Claudia Zucchi
    • 4
  • Gyula Pályi
    • 4
  1. 1.Institute of StochasticsUniversity of Technology and EconomicsBudapestHungary
  2. 2.Department of Chemistry and Technology of Biologically Active CompoundsUniversity “La Sapienza”-RomaRomaItaly
  3. 3.Institute of Inorganic and Analytical ChemistryUniversity of DebrecenDebrecenHungary
  4. 4.Department of ChemistryUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations