Reflection assisted beam propagation model for obstructed line-of-sight FSO links



A non-line-of-sight (NLOS) infra-red reflection based beam propagation model is proposed as a supplement to conventional terrestrial free space optical (FSO) communication system. This ray propagation model lets tactically positioned optical reflectors to smartly exploit the aggregated advantages of mirror characteristics to bridge the existent communication gap between two FSO nodes due to inclined or obstructed line-of-sight view. Additionally, a numerical framework of the proposed system is presented that analytically explores the optical losses induced by harmonic distortions and the resultant beam divergence at the receiver. The impact of the different reflectors on the traversing beam is then investigated through an experimental FSO test-bed set in an outdoor environment in terms of phase shifts, divergence loss, noise margin and maximum achievable link length. Matlab based simulations, based on the experimental outcomes, envisages that concave reflectors can effectively compensate the turbulence induced signal fading and restrict the beam divergence loss; thereby, improving the maximum achievable NLOS FSO link length.


Non line-of-sight Free space optics Infrared links Laser beams Mirror Optical communication Reflection 


  1. Badar, N., Jha, R.K.: Performance comparison of various modulation schemes over free space optical (FSO) link employing Gamma–Gamma fading model. Opt. Quant. Electron. 49(192), 1–10 (2017)Google Scholar
  2. Billabert, A.L., Deshours, F., Moreno, L., Algani, C., Rumelhard, C.: Modulator non linearity influence on UWB signal performance over RoF link. In: Proceedings of the European Microwave Conference, pp. 1249–1252 (2011)Google Scholar
  3. Binh, L.N.: Optical Fiber Communication Systems with MATLAB® and Simulink® Models. CRC Press/Taylor and Francis Group, Boca Raton/London (2015)Google Scholar
  4. Bosu, R., Prince, S.: Perturbation methods to track wireless optical wave propagation in a random medium. J. Opt. Soc. A 33(2), 244–250 (2016)ADSCrossRefGoogle Scholar
  5. Chalise, B.K., Vandendorpe, L.: Performance analysis of linear receivers in a MIMO relaying system. IEEE Commun. Lett. 13(5), 330–332 (2009)CrossRefGoogle Scholar
  6. Chen, G., Xu, Z., Ding, H., Sadler, B.: Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications. Opt. Express 17(5), 3929–3940 (2009)ADSCrossRefGoogle Scholar
  7. Ghassemlooy, Z., Popoola, W.O., Rajbhandari, S.: Optical Wireless Communications System and Channel-Modelling with MATLAB®. CRC Press, Boca Raton (2013)Google Scholar
  8. Halliday, D.: Walker: Fundamentals of Physics. Wiley India Pvt Ltd, New Delhi (2013)Google Scholar
  9. Hulea, M., Ghassemlooy, Z., Rajbhandari, S., Tang, X.: Compensating for optical beam scattering and wandering in FSO communications. J. Lightw. Technol. 32(7), 1323–1328 (2015)ADSCrossRefGoogle Scholar
  10. Keiser, G.: Optical Fiber Communications. Tata McGraw-Hill Education, New Delhi (2008)Google Scholar
  11. Li, M., Li, Y., Han, J.: Gerchberg–Saxton algorithm based phase correction in optical wireless communication. Phys. Commun. 25, 323–327 (2017)CrossRefGoogle Scholar
  12. Li, Y., Pappas, N., Angelakis, V., Pióro, M., Yuan, D.: Optimization of free space optical wireless network for cellular backhauling. IEEE J. Sel. Areas Commun. 33(9), 1841–13854 (2015)CrossRefGoogle Scholar
  13. Liu, X., Wang, P., Liu, T., Li, Y., Guo, L., Tian, H.: ABER performance of LDPC-coded OFDM free-space optical communication system over exponentiated Weibull fading channels with pointing errors. IEEE Photon. J. 9(4), Article No. 7905113 (2017)Google Scholar
  14. Madani, M.H., Abdipour, A., Mohammadi, A.: Analysis of performance degradation due to non-linearity and phase noise in orthogonal frequency division multiplexing systems. IET Commun. 4(10), 1226–1237 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. Majumdar, A.K.: Advanced Free Space Optics (FSO): A Systems Approach. Springer, New York (2015)CrossRefGoogle Scholar
  16. Noshad, M., Pearce, M.B., Wilson, S.G.: NLOS UV communications using M-ary spectral-amplitude-coding. IEEE Trans. Commun. 61(4), 1544–1553 (2013)CrossRefGoogle Scholar
  17. Pasian, M., Bozzi, M., Perregrini, L.: Accurate modeling of dichroic mirrors in beam-waveguide antennas. IEEE Trans. Antennas Wave Propag. 61(4), 1931–1938 (2013)ADSCrossRefGoogle Scholar
  18. Senior, J.M.: Optical Fiber Communications: Principles and Practice. Pearson Education, London (2009)Google Scholar
  19. Shang, J., Nan, Z., Liu, S., Qiu, C., Xin, X.: Performance analysis of QPSK in free-space optical communications systems over combined channel with phase compensation error. Opt. Quant. Electron. 47(2555), 2555–2563 (2015)CrossRefGoogle Scholar
  20. Silva, M.: Cable and Wireless Networks: Theory and Practice. CRC Press, Boca Raton (2016)Google Scholar
  21. Song, T., Wang, Q., Wu, M.W., Kam, P.Y.: Performance of laser inter-satellite links with dynamic beam waist adjustment. Opt. Express 24(11), 11950–11960 (2016)ADSCrossRefGoogle Scholar
  22. Sun, Y., Gong, C., Xu, Z., Zhan, Y.: Link gain and pulse width broadening evaluation of non-line-of-sight optical wireless scattering communication over broad spectra. IEEE Photon. J. 9(3), 1–13 (2017)Google Scholar
  23. Tang, X., Wang, Z., Xu, Z., Ghassemlooy, Z.: Multihop free-space optical communications over turbulence channels with pointing errors using heterodyne detection. J. Lightw Technol. 32(15), 2597–2604 (2014)CrossRefGoogle Scholar
  24. Viswanath, A., Jain, V.K., Kar, S.: Aperture averaging and receiver diversity for FSO downlink in presence of atmospheric turbulence and weather conditions for OOK, M-PPM and M-DPPM schemes. Opt. Quant. Electron. 48(435), 1–20 (2016)Google Scholar
  25. Wang, L., Xu, Z., Sadler, B.M.: An approximate closed-form link loss model for non-line-of-sight ultraviolet communication in non-coplanar geometry. Opt. Lett. 36(7), 1224–1226 (2011)ADSCrossRefGoogle Scholar
  26. Wang, P., Yang, B., Guo, L., Shang, T.: SER performance analysis of MPPM FSO system with three decision thresholds over exponentiated Weibull fading channels. Opt. Commun. 354, 1–8 (2015)ADSCrossRefGoogle Scholar
  27. Xu, Z., Chen, G., Galala, A., Leonardi, M.: Experimental performance evaluation of non-line-of-sight ultraviolet communication systems. In: Proceedings of the SPIE, pp. 1–12 (2007)Google Scholar
  28. Yong, Z., Jian, W., Houfei, X., Jintong, L.: Non-line-of-sight ultraviolet communication performance in atmospheric turbulence. China Commun. 10(11), 52–57 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SRM Institute of Science and TechnologyChennaiIndia

Personalised recommendations