Analysis of semiconductor coupled waveguides with interband absorption

  • João Paulo N. Torres
  • António Baptista
  • Vitor Maló Machado


The main goal of this paper is the discussion of the energy transfer mechanisms between two concentric waveguides. An analytical model is developed for the electromagnetic propagation in two coupled concentric semiconductor waveguides. This model includes the calculation of the semiconductor refractive index taking into account the carrier densities, temperature and frequency. The model allows the analysis of the mechanisms of energy transfer between the two waveguides. As expected two types of energy loss are present, one related to the curvature of the waveguides and the other related to the absorption of the radiation in the semiconductor. Finally, the analyzed structure was optimized with regards to the above parameters.


Absorption model Waveguide Frequency Temperature Carrier density 



This work was supported by national founds through the Fundação para a ciência e a Tecnologia (FCT) of the Portuguese Government through IT with reference UID/EEA/50008/2013.


  1. Absil, P.P., Hryniewicz, J.V., Little, B.E., Cho, P.S., Wilson, R.A., Joneckis, G., Ho, P.T.: Wavelength conversion in GaAs micro-ring resonators. Opt. Lett. 25, 554–556 (2000). doi: 10.1364/OL.25.000554 ADSCrossRefGoogle Scholar
  2. Aspnes, D.E., Kelso, S.M., Logan, R.A., Bhat, R.: Optical properties of AlxGa1−xAs. J. Appl. Phys. 60, 754–767 (1986). doi: 10.1063/1.337426 ADSCrossRefGoogle Scholar
  3. Bányai, L., Koch, S.W.: A simple theory for the effects of plasma screening on optical spectra of highly excited semiconductors. Z. Phys. B Condens. Matter 63(3), 283–291 (1986). doi: 10.1007/BF01303807 ADSCrossRefGoogle Scholar
  4. Bykov, D.V., Silichev, O.: Laser Resonators. Cambridge International Science Publishing, United Kingdom (1995) Google Scholar
  5. Cao, H., Liu, C., Deng, H., Benavidez, M., Smagley, V., Caldwell, R., Peake, G., Smolyakov, G., Eliseev, P., Osinski, M.: Frequency beating between monolithically integrated semiconductor ring lasers. Appl. Phys. Lett. 86(4), 041101 (2005). doi: 10.1063/1.1853532 ADSCrossRefGoogle Scholar
  6. Dixit, K.: Filtering Resonators. Nova Science Publishers Inc, United States (2001)Google Scholar
  7. Grover, R., Ibrahim, T.A., Ding, T.N., Leng, Y., Kuo, L.C., Kanakaraju, S., Amarnath, K., Calhoun, L.C., Ho, P.T.: Lateral coupled InP-based single-mode microracetrack notch filter. IEEE Photon. Technol. Lett. 15(8), 1082–1084 (2003). doi: 10.1109/LPT.2003.815335 ADSCrossRefGoogle Scholar
  8. Hagness, S.C., Rafizadeh, D., Ho, S.T., Taflove, A.: FDTD Microcavity simulations: design and experimental realization of waveguide-coupled single mode ring whispering-gallery-mode disk resonators. IEEE J. Lightwave Technol. 15(11), 2154–2165 (1997). doi: 10.1109/50.641537 ADSCrossRefGoogle Scholar
  9. Hall, D., Jackson, P.: The Physics and Technology of Laser Resonators. Taylor Francis Ltd, United Kingdom (1989)Google Scholar
  10. Haug, H., Koch, S.W.: Semiconductor laser theory with many-body effects. Phys. Rev. A 39(4), 1887–1898 (1989). doi: 10.1103/PhysRevA.39.1887 ADSCrossRefGoogle Scholar
  11. Hiremath, K.R., Hammer, M., Stoffer, R., Prkna, L., Ctyroky, J.: Analytic approach to dielectric optical bent slab waveguides. Opt. Quant. Electron. 37(1), 37–61 (2005).doi: 10.1007/s11082-005-1118-3 CrossRefGoogle Scholar
  12. Kudryashov, A., Weber, H.: Laser Resonators: Novel Design and Development. SPIE–The International Society for Optical Engineering, United States States of America (1999)Google Scholar
  13. Liao, A.S., Wang, S.: Semiconductor injection lasers with a circular resonator. Appl. Phys. Lett. 36(10), 801–803 (1980). doi: 10.1063/1.91321 ADSCrossRefGoogle Scholar
  14. Lindberg, M., Koch, S.W.: Effective bloch equations for semiconductors. Phys. Rev. B 38(5), 3342–3350 (1988). doi: 10.1103/PhysRevB.38.3342 ADSCrossRefGoogle Scholar
  15. Macek, W.M., Davies, D.T.M.: Rotation sensing with travelling wave ring lasers. Appl. Phys. Lett. 67(2), 67–68 (1963). doi: 10.1063/1.1753778 ADSCrossRefGoogle Scholar
  16. Marcatili, E.A.J.: Bends in optical dielectric guides. Bell Syst. Tech. J. 48(7), 2103–2132 (1969). doi: 10.1002/j.1538-7305.1969.tb01167.x CrossRefGoogle Scholar
  17. Rabus, D.G., Hamacher, M., Heidrich, H.: High Q channel dropping filters using ring resonators with integrated SOAs. IEEE Photon. Technol. Lett. 10, 1442–1444 (2002). doi: 10.1109/LPT.2002.802375 ADSCrossRefGoogle Scholar
  18. Rafizadeh, D., Zhang, J.P., Hagness, S.C., Taflove, A., Stair, K.A., Ho, S.T.: Temperature tuning of microcavity ring and disk resonators at 1.5 μm. In: Proceedings of the IEEE LEOS Annual Meeting, pp. 162–163 (1997).doi: 10.1109/LEOS.1997.645327
  19. Rosenthal, A.H.: Regenerative circular multiple-beam interferometry for the study of light-propagation effects. J. Opt. Soc. Am. 52(10), 1143–1148 (1962). doi: 10.1364/JOSA.52.001143 ADSCrossRefGoogle Scholar
  20. Torres, J.: Laseres em anel semicondutor. Ph.D. Thesis, Technical University of Lisbon (2014)Google Scholar
  21. Torres, J., Baptista, A., Machado, V.M.: Coupling analysis in concentric ring waveguides. IEEE J. Lightwave Technol. 31(13), 2140–2145 (2013). doi: 10.1109/JLT.2013.2263633 ADSCrossRefGoogle Scholar
  22. Varshni, Y.P.: Temperature dependence of the energy gap in semiconductors. Physica (Utrecht) 34(1), 149–154 (1967). doi: 10.1016/0031-8914(67)90062-6 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • João Paulo N. Torres
    • 1
  • António Baptista
    • 1
    • 2
  • Vitor Maló Machado
    • 1
  1. 1.Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de LisboaLisboaPortugal
  2. 2.Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations