Skip to main content
Log in

Analysis of semiconductor coupled waveguides with interband absorption

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The main goal of this paper is the discussion of the energy transfer mechanisms between two concentric waveguides. An analytical model is developed for the electromagnetic propagation in two coupled concentric semiconductor waveguides. This model includes the calculation of the semiconductor refractive index taking into account the carrier densities, temperature and frequency. The model allows the analysis of the mechanisms of energy transfer between the two waveguides. As expected two types of energy loss are present, one related to the curvature of the waveguides and the other related to the absorption of the radiation in the semiconductor. Finally, the analyzed structure was optimized with regards to the above parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Absil, P.P., Hryniewicz, J.V., Little, B.E., Cho, P.S., Wilson, R.A., Joneckis, G., Ho, P.T.: Wavelength conversion in GaAs micro-ring resonators. Opt. Lett. 25, 554–556 (2000). doi:10.1364/OL.25.000554

    Article  ADS  Google Scholar 

  • Aspnes, D.E., Kelso, S.M., Logan, R.A., Bhat, R.: Optical properties of AlxGa1−xAs. J. Appl. Phys. 60, 754–767 (1986). doi:10.1063/1.337426

    Article  ADS  Google Scholar 

  • Bányai, L., Koch, S.W.: A simple theory for the effects of plasma screening on optical spectra of highly excited semiconductors. Z. Phys. B Condens. Matter 63(3), 283–291 (1986). doi:10.1007/BF01303807

    Article  ADS  Google Scholar 

  • Bykov, D.V., Silichev, O.: Laser Resonators. Cambridge International Science Publishing, United Kingdom (1995)

    Google Scholar 

  • Cao, H., Liu, C., Deng, H., Benavidez, M., Smagley, V., Caldwell, R., Peake, G., Smolyakov, G., Eliseev, P., Osinski, M.: Frequency beating between monolithically integrated semiconductor ring lasers. Appl. Phys. Lett. 86(4), 041101 (2005). doi:10.1063/1.1853532

    Article  ADS  Google Scholar 

  • Dixit, K.: Filtering Resonators. Nova Science Publishers Inc, United States (2001)

    Google Scholar 

  • Grover, R., Ibrahim, T.A., Ding, T.N., Leng, Y., Kuo, L.C., Kanakaraju, S., Amarnath, K., Calhoun, L.C., Ho, P.T.: Lateral coupled InP-based single-mode microracetrack notch filter. IEEE Photon. Technol. Lett. 15(8), 1082–1084 (2003). doi:10.1109/LPT.2003.815335

    Article  ADS  Google Scholar 

  • Hagness, S.C., Rafizadeh, D., Ho, S.T., Taflove, A.: FDTD Microcavity simulations: design and experimental realization of waveguide-coupled single mode ring whispering-gallery-mode disk resonators. IEEE J. Lightwave Technol. 15(11), 2154–2165 (1997). doi:10.1109/50.641537

    Article  ADS  Google Scholar 

  • Hall, D., Jackson, P.: The Physics and Technology of Laser Resonators. Taylor Francis Ltd, United Kingdom (1989)

    Google Scholar 

  • Haug, H., Koch, S.W.: Semiconductor laser theory with many-body effects. Phys. Rev. A 39(4), 1887–1898 (1989). doi:10.1103/PhysRevA.39.1887

    Article  ADS  Google Scholar 

  • Hiremath, K.R., Hammer, M., Stoffer, R., Prkna, L., Ctyroky, J.: Analytic approach to dielectric optical bent slab waveguides. Opt. Quant. Electron. 37(1), 37–61 (2005).doi:10.1007/s11082-005-1118-3

    Article  Google Scholar 

  • Kudryashov, A., Weber, H.: Laser Resonators: Novel Design and Development. SPIE–The International Society for Optical Engineering, United States States of America (1999)

    Google Scholar 

  • Liao, A.S., Wang, S.: Semiconductor injection lasers with a circular resonator. Appl. Phys. Lett. 36(10), 801–803 (1980). doi:10.1063/1.91321

    Article  ADS  Google Scholar 

  • Lindberg, M., Koch, S.W.: Effective bloch equations for semiconductors. Phys. Rev. B 38(5), 3342–3350 (1988). doi:10.1103/PhysRevB.38.3342

    Article  ADS  Google Scholar 

  • Macek, W.M., Davies, D.T.M.: Rotation sensing with travelling wave ring lasers. Appl. Phys. Lett. 67(2), 67–68 (1963). doi:10.1063/1.1753778

    Article  ADS  Google Scholar 

  • Marcatili, E.A.J.: Bends in optical dielectric guides. Bell Syst. Tech. J. 48(7), 2103–2132 (1969). doi:10.1002/j.1538-7305.1969.tb01167.x

    Article  Google Scholar 

  • Rabus, D.G., Hamacher, M., Heidrich, H.: High Q channel dropping filters using ring resonators with integrated SOAs. IEEE Photon. Technol. Lett. 10, 1442–1444 (2002). doi:10.1109/LPT.2002.802375

    Article  ADS  Google Scholar 

  • Rafizadeh, D., Zhang, J.P., Hagness, S.C., Taflove, A., Stair, K.A., Ho, S.T.: Temperature tuning of microcavity ring and disk resonators at 1.5 μm. In: Proceedings of the IEEE LEOS Annual Meeting, pp. 162–163 (1997).doi:10.1109/LEOS.1997.645327

  • Rosenthal, A.H.: Regenerative circular multiple-beam interferometry for the study of light-propagation effects. J. Opt. Soc. Am. 52(10), 1143–1148 (1962). doi:10.1364/JOSA.52.001143

    Article  ADS  Google Scholar 

  • Torres, J.: Laseres em anel semicondutor. Ph.D. Thesis, Technical University of Lisbon (2014)

  • Torres, J., Baptista, A., Machado, V.M.: Coupling analysis in concentric ring waveguides. IEEE J. Lightwave Technol. 31(13), 2140–2145 (2013). doi:10.1109/JLT.2013.2263633

    Article  ADS  Google Scholar 

  • Varshni, Y.P.: Temperature dependence of the energy gap in semiconductors. Physica (Utrecht) 34(1), 149–154 (1967). doi:10.1016/0031-8914(67)90062-6

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by national founds through the Fundação para a ciência e a Tecnologia (FCT) of the Portuguese Government through IT with reference UID/EEA/50008/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo N. Torres.

Appendix

Appendix

The dielectric constant of the waveguide is a function of the carrier densities in the semiconductors. As a consequence, the propagation constant of the waveguide also depends on the carrier densities.

In a more generic way the Eq. (3) can be written as:

$$\varepsilon^{\prime\prime} = 8\left( {\pi r_{cv} } \right)^{2} \tanh \left[ {\frac{{\hbar \omega - \mathop \sum \nolimits_{\alpha } u_{\alpha } }}{2kT}} \right]\mathop \sum \limits_{\lambda } \left| {\emptyset_{\lambda } \left( {r = 0} \right)} \right|^{2} \delta_{T} \left( {\hbar \omega - W_{\lambda } } \right)$$

The summation has two contributions, one associated with bound states and another with continuous states, and can be written as:

$$\varepsilon^{\prime\prime} = 8\left( {\pi r_{cv} } \right)^{2} \tanh \left[ {\frac{{\hbar \omega - \sum\nolimits_{\alpha } {u_{\alpha } } }}{2kT}} \right]\left\{ { - \frac{1}{{\pi a_{0}^{3} }}\sum\limits_{\lambda = 1}^{{g^{{\frac{1}{2}}} }} {\left[ {\frac{{(\lambda^{2} - g)(2\lambda^{2} - g)}}{{2\lambda^{3} g^{2} }}\prod\limits_{\begin{subarray}{l} n = 1 \\ n \ne \lambda \end{subarray} }^{\infty } {\frac{{n^{2} [(n\lambda )^{2} - (g - \lambda^{2} )^{2} ]}}{{((n\lambda )^{2} - g^{2} )(n^{2} - \lambda^{2} )}}} } \right]} } {\delta_{T} \left( {\hbar \omega - W_{R} \left( {\frac{{g - \lambda^{2} }}{g\lambda }} \right)^{2} } \right) + \mathop{\int}\limits_{0}^{\infty } {dW_{k} W_{k}^{1/2} \delta_{T} (\hbar \omega - W_{k} )} \prod\limits_{n = 1}^{\infty } {\left[ {1 + \frac{{2n^{2} - g^{2} }}{{(n^{2} - g)^{2} + (gn)^{2} x}}} \right]} } \right\}$$

where \(g = \frac{12}{{\pi^{2} a_{0} k_{s} }}\), \(\delta_{T} \left( x \right) = \frac{1}{{\pi T{ \cosh }\left[ {\frac{x}{T}} \right]}}\), \(x = \frac{{W_{k} }}{kT}\), \(a_{0} = \frac{{\hbar^{2} {\mathcal{E}}_{0} }}{{mq^{2} }}\) is the Bohr radius, u α is Fermi level for electrons (α = e) and holes (α = h), m α is the electron effective mass if α = e and for holes if α = h, \(m^{ - 1} = \sum\nolimits_{\alpha } {m_{\alpha }^{ - 1} }\) and r cv is the element of the transition matrix in the direction of the electric field.

The screening length is determined by:

$$\left( {a_{0} k_{s} } \right)^{2} = \frac{4}{\pi }\left( {\frac{kT}{{W_{R} }}} \right)^{1/2} \mathop \int \limits_{0}^{\infty } dxx^{1/2} \mathop \sum \limits_{\alpha } m_{\alpha }^{3/2} f\left( {x - \frac{{u_{\alpha } - {\raise0.7ex\hbox{${W_{G} }$} \!\mathord{\left/ {\vphantom {{W_{G} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}}{kT}} \right)\left[ {1 - f_{\alpha } \left( {x - u_{\alpha } } \right)} \right]$$

where \({\text{f}}_{{{\upalpha }}}\) is the usual Fermi function for free electrons and holes.

The Fermi level for electron and holes is given by:

$$N_{\alpha } = \frac{1}{{2\uppi^{2} a_{0}^{3} }}\left( {\frac{{{\text{T}}m_{\alpha } }}{{W_{R} m}}} \right)^{3/2} \mathop \int \limits_{0}^{\infty } {\text{d}}x x^{1/2} {\text{f}}\left( {x - \frac{{u_{\alpha } - {\raise0.7ex\hbox{${{\text{W}}_{\text{G}} }$} \!\mathord{\left/ {\vphantom {{{\text{W}}_{\text{G}} } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}}{\text{kT}}} \right)$$

where N α is the carrier density.

The results of the paper where obtained with the parameters:

m α  = 0.0665 m 0, m h  = 0.52 m 0, W R  = 0.0042 eV, m 0 = 9.109 × 10−31kg, W G  = 1.424 eV, q = 1.602 × 10−19 C

The real part of the dielectric constant, \(\varepsilon^{\prime}\), is determined from the Kramers–Kronig relation Eq. (5).

The connection between the carrier densities and the characteristics of the structure are implicit in the characteristic equation. This equation results from the application of the boundary conditions, and is used to find the waveguide propagation constant. This equation is a function of the refractive index, the width of the waveguide and the curvature radius. So when the dielectric constant change with the carrier densities, the refractive index will change and the propagation constant will change too.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, J.P.N., Baptista, A. & Machado, V.M. Analysis of semiconductor coupled waveguides with interband absorption. Opt Quant Electron 48, 366 (2016). https://doi.org/10.1007/s11082-016-0626-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0626-7

Keywords

Navigation