Advertisement

Numerical Algorithms

, Volume 64, Issue 4, pp 741–757 | Cite as

New error bounds for the linear complementarity problem with an SB-matrix

  • Ping-Fan Dai
  • Chang-Jing Lu
  • Yao-Tang Li
Original Paper

Abstract

Error bounds for SB-matrices linear complementarity problems are given in the paper (Dai et al., Numer Algorithms 61:121–139, 2012). In this paper, new error bounds for the linear complementarity problem when the matrix involved is an SB-matrix are presented and some sufficient conditions that new bounds are sharper than those of the previous paper under certain assumptions are provided. New perturbation bounds of SB-matrices linear complementarity problems are also considered.

Keywords

Error bounds Linear complementarity problem B-matrices SB-matrices P-matrices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. In: Classics Appl. Math. SIAM, Philadelphia (1994)Google Scholar
  2. 2.
    Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, San Diego (1992)MATHGoogle Scholar
  3. 3.
    Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin (1988)MATHGoogle Scholar
  4. 4.
    Chen, X.J., Xiang, S.H.: Computation of error bounds for P-matrix linear complementarity problems. Math. Program., Ser. A 106, 513–525 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chen, X.J., Xiang, S.H.: Perturbation bounds of P-matrix linear complementarity problems. SIAM J. Optim. 18, 1250–1265 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Mathias, R., Pang, J.S.: Error bounds for the linear complementarity problem with a P-matrix. Linear Algebra Appl. 132, 123–136 (1990)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dai, P.-F., Li, Y.-T., Lu, C.-J.: Error bounds for linear complementarity problems for SB-matrices. Numer. Algor. 61, 121–139 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    García-Esnaola, M., Peña, J.M.: A comparison of error bounds for linear complementarity problems of H-matrices. Linear Algebra Appl. 433, 956–964 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    García-Esnaola, M., Peña, J.M.: Error bounds for linear complementarity problems for B-matrices. Appl. Math. Lett. 22, 1071–1075 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dai, P.-F.: Error bounds for linear complementarity problems of DB-matrices. Linear Algebra Appl. 434, 830–840 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    García-Esnaola, M., Peña, J.M.: Error bounds for linear complementarity problems involving B S-matrices. Appl. Math. Lett. 25, 1379–1383 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Peña, J.M.: A class of P-matrices with applications to the localization of the eigenvalues of a real matrix. SIAM J. Matrix Anal. Appl. 22, 1027–1037 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Peña, J.M.: On an alternative to Gershgorin circles and ovals of Cassini. Numer. Math. 95, 337–345 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Li, H.B., Huang, T.-Z., Li, H.: On some subclasses of P-matrices. Numer. Linear Algebra Appl. 14, 391–405 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Cvetković, L., Kostic, V., Varga, R.S.: A new Geršgorin-type eigenvalue inclusion set. Electron. Trans. Numer. Anal. 18, 73–80 (2004)MathSciNetMATHGoogle Scholar
  16. 16.
    Sogabe, T.: Numerical algorithms for solving comrade linear systems based on tridiagonal solvers. Appl. Math. Comput. 198, 117–122 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Varah, J.M.: A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11, 3–5 (1975)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Cvetković, L., Peña, J.M.: Minimal sets alternative to minimal Geršgorin sets. Appl. Numer. Math. 60, 442–451 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.IOT Application Engineering Research Center of Fujian Province Colleges and Universities, School of Information EngineeringSanming UniversitySanmingPeople’s Republic of China
  2. 2.Department of MathematicsYunnan UniversityYunnanPeople’s Republic of China

Personalised recommendations