Numerical Algorithms

, Volume 63, Issue 3, pp 419–430 | Cite as

A new integral filter algorithm for unconstrained global optimization

Original Paper


In this paper, making use a exponential integral filter, a new algorithm for unconstrained global optimization is proposed. Compared with Yang’s absolute value type integral filter method (Yang et al., Appl Math Comput 18:173–180, 2007), this algorithm is more effective and more sensitive. Numerical results for some typical examples show that in most cases, this algorithm works effectively and reliably.


Global optimization Integral filter Branch and bound Local search algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yang, Y.J., Du, X.W., Li, M.M.: A integral filter algorithm for unconstrained global optimization. Appl. Math. Comput. 18, 173–180 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Pardalos, P., Romejin, H.E.: Handbook of Global Optimization, vol. 2. Kluwer Academic Publishers (2002)Google Scholar
  3. 3.
    Zhigljavsky, A., Zilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)Google Scholar
  4. 4.
    Storgin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints. Springer, New York (2000)Google Scholar
  5. 5.
    Levy, A.B.: The tunneling algorithm for the global minimization of function. SIAM J. Sci. Stat. Comput. 6, 15–29 (1985)MATHCrossRefGoogle Scholar
  6. 6.
    Ge, R.P.: A filled function method for finding a global minimizer of a function of several variables. Math. Program. 46, 191–204 (1990)MATHCrossRefGoogle Scholar
  7. 7.
    Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Kluwer Academic Publishers (1995)Google Scholar
  8. 8.
    Liu, H.L., Ye, F.: Realization of Monte Carlo method by using uniform random sequence for calculating multiple integrals, (in Chinese). Computer Knowledge and Technology 4(35), 2289–2291 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations