Skip to main content

Advertisement

Log in

Stability and bifurcation analysis of the period-T motion of a vibroimpact energy harvester

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Stability and bifurcation conditions for a vibroimpact motion in an inclined energy harvester with T-periodic forcing are determined analytically and numerically. This investigation provides a better understanding of impact velocity and its influence on energy harvesting efficiency and can be used to optimally design the device. The numerical and analytical results of periodic motions are in excellent agreement. The stability conditions are developed in non-dimensional parameter space through two basic nonlinear maps based on switching manifolds that correspond to impacts with the top and bottom membranes of the energy harvesting device. The range for stable simple T-periodic behavior is reduced with increasing angle of incline \(\beta \), since the influence of gravity increases the asymmetry of dynamics following impacts at the bottom and top. These asymmetric T-periodic solutions lose stability to period doubling solutions for \(\beta \ge 0\), which appear through increased asymmetry. The period doubling, symmetric and asymmetric periodic motion are illustrated by bifurcation diagrams, phase portraits and velocity time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stephen, N.G.: On energy harvesting from ambient vibration. J. Sound Vib. 293, 409–425 (2006)

    Article  Google Scholar 

  2. Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59, 545–558 (2010)

    Article  Google Scholar 

  3. Yan, L., Lallart, M., Karami, A.: Low-cost orbit jump in nonlinear energy harvesters through energy-efficient stiffness modulation. Sens. Actuators A Phys. 285, 676–684 (2019)

    Article  Google Scholar 

  4. Bobryk, R.V., Yurchenko, D.: On enhancement of vibration-based energy harvesting by a random parametric excitation. J. Sound Vib. 366, 407–417 (2016)

    Article  Google Scholar 

  5. Chongfeng, W., Xingjian, J.: Vibrational energy harvesting by exploring structural benefits and nonlinear characteristics. Commun. Nonlinear Sci. Numer. Simul. 48, 288–306 (2017)

    Article  MathSciNet  Google Scholar 

  6. Quinn, D.D., Triplett, A.L., Bergman, L.A., Vakakis, A.F.: Comparing linear and essentially nonlinear vibration-based energy harvesting. J. Vib. Acoust. 133, 011001 (2011)

    Article  Google Scholar 

  7. Ibrahim, R.A.: Vibro-impact dynamics: modeling, mapping and applications. Springer, Berlin (2009)

    Book  Google Scholar 

  8. Babitsky, V.I.: Theory of Vibro-impact Systems and Applications. Springer, Berlin (2013)

    MATH  Google Scholar 

  9. Dimentberg, M.F., Yurchenko, D.V.: Random vibrations with impacts: a review. Nonlinear Dyn. 36, 229–254 (2004)

    Article  MathSciNet  Google Scholar 

  10. Al-Shudeifat, M.A., Wierschem, N., Quinn, D.D., Vakakis, A.F., Bergman, L.A., Spencer, J.B.: Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation. Int. J. Non-Linear Mech. 52, 96–109 (2013)

    Article  Google Scholar 

  11. Gendelman, O.V., Allon, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 301–314 (2015)

    Article  Google Scholar 

  12. Shaw, S.W., Holmes, P.J.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90, 129–155 (1983)

    Article  MathSciNet  Google Scholar 

  13. Whiston, G.S.: Global dynamics of a vibro-impacting linear oscillator. J. Sound Vib. 118, 395–429 (1987)

    Article  MathSciNet  Google Scholar 

  14. Luo, A., Guo, Y.: Vibro-impact Dynamics. Wiley, Hoboken (2013)

    Book  Google Scholar 

  15. Nordmark, A.B.: Universal limit mapping in grazing bifurcations. Phys. Rev. E 55, 266–270 (1997)

    Article  Google Scholar 

  16. Budd, C., Dux, F., Cliffe, A.: The effect of frequency and clearance variations on single-degree-of-freedom impact oscillators. J. Sound Vib 184, 475–502 (1995)

    Article  Google Scholar 

  17. Holmes, P.J.: The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vib. 84, 173–189 (1982)

    Article  MathSciNet  Google Scholar 

  18. Chillingworth, D.R.: Discontinuity geometry for an impact oscillator. Dyn. Syst. 17, 389–420 (2002)

    Article  MathSciNet  Google Scholar 

  19. Wagg, D.J., Bishop, S.R.: Dynamics of a two degree of freedom vibro-impact system with multiple motion limiting constraints. Int. J. Bifurc. Chaos 14, 119–140 (2004)

    Article  Google Scholar 

  20. Wagg, D.J.: Periodic sticking motion in a two-degree-of-freedom impact oscillator. Int. J. of Non-Linear Mech. 40, 1076–1087 (2005)

    Article  Google Scholar 

  21. Simpson, D., Hogan, S., Kuske, R.: Stochastic regular grazing bifurcations. SIAM J. Appl. Dyn. Syst. 12, 533–559 (2012)

    Article  MathSciNet  Google Scholar 

  22. Masri, S.F., Ibrahim, A.M.: Response of the impact damper to stationary random excitation. J. Acoust. Soc. Am. 53, 200–211 (1973)

    Article  Google Scholar 

  23. Yurchenko, D., Val, D.V., Lai, Z.H., Gu, G., Thomson, G.: Energy harvesting from a DE-based dynamic vibro-impact system. Smart Mater. Struct. 26, 105001 (2017)

    Article  Google Scholar 

  24. Yurchenko, D., Lai, Z.H., Thomson, G., Val, D.V., Bobryk, R.: Parametric study of a novel vibro-impact energy harvesting system with dielectric elastomer. Appl. Energy 208, 456–470 (2017)

    Article  Google Scholar 

  25. Luo, A.: An unsymmetrical motion in a horizontal impact oscillator. J. Vib. Acoust. 124, 420–426 (2002)

    Article  Google Scholar 

  26. Luo, A.: Period-doubling induced chaotic motion in the LR model of a horizontal impact oscillator. Chaos Solitons Fractals 19, 823–839 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa Serdukova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

We give the details for the calculations of the eigenvalues \(\lambda _{1,2}\). The entries in the matrices in (4.2) are

$$\begin{aligned}&\frac{\partial t_{k}}{\partial t_{k-1}} = \frac{r\dot{Z}_{k-1}-\bar{g}T_u-f(t_{k-1})T_u}{\dot{Z}_{k-1}-\frac{\bar{g}T}{1+r}}, \nonumber \\&\frac{\partial t_{k}}{\partial \dot{Z}_{k-1}} = \frac{-r T_u}{\dot{Z}_{k-1} -\frac{\bar{g}T}{1+r}},\nonumber \\&\frac{\partial \dot{Z}_{k}}{\partial t_{k-1}} = \frac{\partial t_{k}}{\partial t_{k-1}}[f(t_k)+\bar{g}]-[f(t_{k-1})+\bar{g}],\nonumber \\&\frac{\partial \dot{Z}_k}{\partial \dot{Z}_{k-1}} = -r + \frac{\partial t_{k}}{\partial \dot{Z}_{k-1}} [f(t_k)+\bar{g}], \end{aligned}$$
(A.1)

and

$$\begin{aligned}&\frac{\partial t_{k+1}}{\partial t_{k}} = \frac{r\dot{Z}_{k}-\bar{g}T_d-f(t_{k})T_d}{\dot{Z}_{k}-\frac{\bar{g}T}{1+r}}, \nonumber \\&\frac{\partial t_{k+1}}{\partial \dot{Z}_{k}} = \frac{-r T_d}{\dot{Z}_{k} -\frac{\bar{g}T}{1+r}},\nonumber \\&\frac{\partial \dot{Z}_{k+1}}{\partial t_{k}} = \frac{\partial t_{k+1}}{\partial t_{k}}[f(t_{k+1})+\bar{g}]-[f(t_{k})+\bar{g}],\nonumber \\&\frac{\partial \dot{Z}_{k+1}}{\partial \dot{Z}_{k}} = -r + \frac{\partial t_{k+1}}{\partial \dot{Z}_{k}} [f(t_{k+1})+\bar{g}]. \end{aligned}$$
(A.2)

For the period-2 motion, the trace and determinant of the linearized matrix DP are

$$\begin{aligned} Det(DP)&=r^4 , \end{aligned}$$
(A.3)
$$\begin{aligned} Tr(DP)&=\left( r+\frac{rT_u(\bar{g}+f(t_k))}{\sigma _3}\right) \nonumber \\&\qquad \left( r-\frac{rT_d(\bar{g}+f(t_{k+1}))}{\dot{Z}(t_{k-1})}\right) \nonumber \\&\qquad +\frac{rT_u \left( \bar{g}+f(t_k)-\frac{(\bar{g}+f(t_{k+1}))\sigma _2}{\dot{Z}(t_{k-1})} \right) }{\sigma _3}\nonumber \\&\qquad -\frac{rT_d \left( \bar{g}+f(t_{k-1})+\frac{(\bar{g}+f(t_{k}))\sigma _1}{\sigma _3} \right) }{\dot{Z}(t_{k-1})} \nonumber \\&\qquad -\frac{\sigma _2 \sigma _1}{\dot{Z}(t_{k-1})\sigma _3}, \end{aligned}$$
(A.4)

where \(\sigma _1=T_u\cdot f(t_{k-1})-r \dot{Z}(t_{k-1})+\bar{g}T_u\), \(\sigma _2=T_d \cdot f(t_{k})+r \sigma _3+\bar{g}T_d\), \(\sigma _3=\dot{Z}(t_{k-1})-\frac{\bar{g}T}{r+1}\).

Considering a horizontal impact pair, (A.3) and (A.4) generate the same equations for determinant and trace for symmetric period-2 motion \((q=1/2)\) and odd n from [25].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdukova, L., Kuske, R. & Yurchenko, D. Stability and bifurcation analysis of the period-T motion of a vibroimpact energy harvester. Nonlinear Dyn 98, 1807–1819 (2019). https://doi.org/10.1007/s11071-019-05289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05289-8

Keywords

Navigation