Skip to main content
Log in

Modal interactions in the nonlinear dynamics of a beam–cable–beam

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Quadratic and cubic modal interactions characterize the geometrically nonlinear dynamics of a parametric analytical model composed by two cantilever beams connected by a suspended shallow cable. The natural frequencies and modes of the linearized model are determined exactly, by solving the integral–differential eigenproblem governing the undamped free oscillations. Interesting phenomena of linear cable–beam interaction (frequency veering and modal hybridization) are recognized in the spectrum. Global and local modes are distinguished by virtue of the two localization factors measuring the modal kinetic energy stored in the beams and cable, respectively. The localization level is also put in relation to the magnitude of the quadratic and cubic nonlinearities. Therefore, the exact linear eigensolution is employed to formulate a nonlinearly coupled two-degrees-of-freedom model, defined in the reduced space of the modal amplitudes corresponding to a global and a local mode. The modal interactions between the two modes are analyzed, with focus on the autoparametric excitation mechanisms that can be favored by the occurrence of integer frequency ratios (1:2 and 2:1). Such internal resonance conditions enable significant transfers of mechanical energy—essentially governed by the quadratic coupling terms—from the small amplitudes of the externally excited global mode to the high amplitudes of the autoparametrically excited local mode. Different regimes of periodic and quasi-periodic oscillations are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Benedettini, F., Rega, G.: Planar non-linear oscillations of elastic cables under superharmonic resonance conditions. J. Sound Vib. 132(3), 353–366 (1989)

    MATH  Google Scholar 

  2. Rega, G., Benedettini, F.: Planar non-linear oscillations of elastic cables under subharmonic resonance conditions. J. Sound Vib. 132(3), 367–381 (1989)

    MATH  Google Scholar 

  3. Srinil, N., Rega, G., Chucheepsakul, S.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I: theoretical formulation and model validation. Nonlinear Dyn. 48(3), 231–252 (2007)

    MATH  Google Scholar 

  4. Srinil, N., Rega, G.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part II: internal resonance activation, reduced-order models and nonlinear normal modes. Nonlinear Dyn. 48(3), 253–274 (2007)

    MATH  Google Scholar 

  5. Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non-Linear Mech. 27(2), 233–250 (1992)

    MATH  Google Scholar 

  6. Lee, C., Perkins, N.C.: Three-dimensional oscillations of suspended cables involving simultaneous internal resonances. Nonlinear Dyn. 8(1), 45–63 (1995)

    MathSciNet  Google Scholar 

  7. Pakdemirli, M., Nayfeh, S.A., Nayfeh, A.H.: Analysis of one-to-one autoparametric resonances in cables—discretization vs. direct treatment. Nonlinear Dyn. 8(1), 65–83 (1995)

    MathSciNet  Google Scholar 

  8. Chang, W.K., Ibrahim, R.A.: Multiple internal resonance in suspended cables under random in-plane loading. Nonlinear Dyn. 12(3), 275–303 (1997)

    MATH  Google Scholar 

  9. Gonzalez-Buelga, A., Neild, S.A., Wagg, D.J., Macdonald, J.H.G.: Modal stability of inclined cables subjected to vertical support excitation. J. Sound Vib. 318(3), 565–579 (2008)

    Google Scholar 

  10. Warminski, J., Zulli, D., Rega, G., Latalski, J.: Revisited modelling and multimodal nonlinear oscillations of a sagged cable under support motion. Meccanica 51(11), 2541–2575 (2016)

    MathSciNet  Google Scholar 

  11. Fujino, Y., Warnitchai, P., Pacheco, B.M.: An experimental and analytical study of autoparametric resonance in a 3DOF model of cable-stayed-beam. Nonlinear Dyn. 4(2), 111–138 (1993)

    Google Scholar 

  12. Lilien, J.L., Pinto da Costa, A.: Vibration amplitudes caused by parametric excitation of cable stayed structures. J. Sound Vib. 174(1), 69–90 (1994)

    MATH  Google Scholar 

  13. Costa, A.P.D., Martins, J.A.C., Branco, F., Lilien, J.L.: Oscillations of bridge stay cables induced by periodic motions of deck and/or towers. J. Eng. Mech. 122(7), 613–622 (1996)

    Google Scholar 

  14. Gattulli, V., Lepidi, M.: Nonlinear interactions in the planar dynamics of cable-stayed beam. Int. J. Solids Struct. 40(18), 4729–4748 (2003)

    MATH  Google Scholar 

  15. Xia, Y., Fujino, Y.: Auto-parametric vibration of a cable-stayed-beam structure under random excitation. J. Eng. Mech. 132(3), 279–286 (2006)

    Google Scholar 

  16. Irvine, H.M.: Cable Structures. MIT Press Series in Structural Mechanics. MIT Press, Cambridge (1981)

    Google Scholar 

  17. Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Non-Linear Mech. 19(1), 39–52 (1984)

    MATH  Google Scholar 

  18. Rega, G., Lacarbonara, W., Nayfeh, A., Chin, C.M.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non-Linear Mech. 34(5), 901–924 (1999)

    MATH  Google Scholar 

  19. Rega, G.: Nonlinear vibrations of suspended cables -Part I: Modeling and analysis. Appl. Mech. Rev. 57(6), 443–478 (2004)

    Google Scholar 

  20. Rega, G.: Nonlinear vibrations of suspended cables—Part II: Deterministic phenomena. Appl. Mech. Rev. 57(6), 479–514 (2004)

    Google Scholar 

  21. Luongo, A., Zulli, D.: Mathematical Models of Beams and Cables. John Wiley & Sons, Hoboken (2013)

    MATH  Google Scholar 

  22. Lacarbonara, W.: Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  23. Abdel-Ghaffar, A.M., Khalifa, M.A.: Importance of cable vibration in dynamics of cable-stayed bridges. J. Eng. Mech. 117(11), 2571–2589 (1991)

    Google Scholar 

  24. Warnitchai, P., Fujino, Y., Susumpow, T.: A non-linear dynamic model for cables and its application to a cable-structure system. J. Sound Vib. 187(4), 695–712 (1995)

    Google Scholar 

  25. Caetano, E., Cunha, A., Taylor, C.A.: Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge. Part I: modal analysis. Earthq. Eng. Struct. Dyn. 29(4), 481–498 (2000)

    Google Scholar 

  26. Wu, Q., Takahashi, K., Okabayashi, T., Nakamura, S.: Response characteristics of local vibrations in stay cables on an existing cable-stayed bridge. J. Sound Vib. 261(3), 403–420 (2003)

    Google Scholar 

  27. Gattulli, V., Lepidi, M.: Localization and veering in the dynamics of cable-stayed bridges. Comput. Struct. 85(21–22), 1661–1678 (2007)

    Google Scholar 

  28. Gattulli, V., Lepidi, M., Potenza, F., Di Sabatino, U.: Dynamics of masonry walls connected by a vibrating cable in a historic structure. Meccanica 51(11), 2813–2826 (2016)

    MathSciNet  Google Scholar 

  29. Liu, M.Y., Zuo, D., Jones, N.P.: Analytical and numerical study of deck-stay interaction in a cable-stayed bridge in the context of field observations. J. Eng. Mech. 139(11), 1636–1652 (2013)

    Google Scholar 

  30. Gattulli, V., Morandini, M., Paolone, A.: A parametric analytical model for non-linear dynamics in cable-stayed beam. Earthq. Eng. Struct. Dyn. 31(6), 1281–1300 (2002)

    Google Scholar 

  31. Gattulli, V., Lepidi, M., Macdonald, J.H., Taylor, C.A.: One-to-two global-local interaction in a cable-stayed beam observed through analytical, finite element and experimental models. Int. J. Non-Linear Mech. 40(4), 571–588 (2005)

    MATH  Google Scholar 

  32. Caetano, E., Cunha, A., Gattulli, V., Lepidi, M.: Cable-deck dynamic interactions at the International Guadiana Bridge: on-site measurements and finite element modelling. Struct. Control Health Monit. 15, 237–264 (2008)

    Google Scholar 

  33. Lepidi, M., Gattulli, V.: A parametric multi-body section model for modal interactions of cable-supported bridges. J. Sound Vib. 333(19), 4579–4596 (2014)

    Google Scholar 

  34. Lepidi, M., Gattulli, V.: Non-linear interactions in the flexible multi-body dynamics of cable-supported bridge cross-sections. Int. J. Non-Linear Mech. 80, 14–28 (2016)

    Google Scholar 

  35. Lepidi, M., Piccardo, G.: Aeroelastic stability of a symmetric multi-body section model. Meccanica 50(3), 731–749 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Arena, A., Lacarbonara, W., Marzocca, P.: Post-critical behavior of suspension bridges under nonlinear aerodynamic loading. J. Comput. Nonlinear Dyn. 11(1), 011005 (2016)

    Google Scholar 

  37. Bochicchio, I., Giorgi, C., Vuk, E.: Steady states and nonlinear buckling of cable-suspended beam systems. Meccanica 53, 1–17 (2018)

    MathSciNet  Google Scholar 

  38. Zhang, W., Cao, D.X.: Studies on bifurcation and chaos of a string-beam coupled system with two degrees-of-freedom. Nonlinear Dyn. 45(1–2), 131–147 (2006)

    MathSciNet  MATH  Google Scholar 

  39. Lenci, S., Ruzziconi, L.: Nonlinear phenomena in the single-mode dynamics of a cable-supported beam. Int. J. Bifurc. Chaos 19(03), 923–945 (2009)

    MathSciNet  Google Scholar 

  40. Amer, Y.A., Hegazy, U.H.: Chaotic vibration and resonance phenomena in a parametrically excited string-beam coupled system. Meccanica 47(4), 969–984 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Cao, D.X., Zhang, W.: Global bifurcations and chaotic dynamics for a string-beam coupled system. Chaos Solitons Fractals 37(3), 858–875 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Fung, R.F., Lu, L.Y., Huang, S.C.: Dynamic modelling and vibration analysis of a flexible cable-stayed beam structure. J. Sound Vib. 254(4), 717–726 (2002)

    Google Scholar 

  43. Wang, Z., Sun, C., Zhao, Y., Yi, Z.: Modeling and nonlinear modal characteristics of the cable-stayed beam. Eur. J. Mech. A Solids 47, 58–69 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Warnitchai, P., Fujino, Y., Pacheco, B.M., Agret, R.: An experimental study on active tendon control of cable-stayed bridges. Earthq. Eng. Struct. Dyn. 22(2), 93–111 (1993)

    Google Scholar 

  45. Gattulli, V., Paolone, A.: Planar motion of a cable-supported beam with feedback controlled actions. J. Intell. Mater. Syst. Struct. 8(9), 767–774 (1997)

    Google Scholar 

  46. Magana, M.E., Volz, P., Miller, T.: Nonlinear decentralized control of a flexible cable-stayed beam structure. J. Vib. Acoust. 119(4), 523–526 (1997)

    Google Scholar 

  47. Luo, N., Rodellar, J., de la Sen, M., Vehí, J.: Decentralized active control of a class of uncertain cable-stayed flexible structures. Int. J. Control 75(4), 285–296 (2002)

    MathSciNet  MATH  Google Scholar 

  48. El Ouni, M.H., Kahla, N.B., Preumont, A.: Numerical and experimental dynamic analysis and control of a cable stayed bridge under parametric excitation. Eng. Struct. 45, 244–256 (2012)

    Google Scholar 

  49. Srinil, N., Rega, G.: The effects of kinematic condensation on internally resonant forced vibrations of shallow horizontal cables. Int. J. Non-Linear Mech. 42(1), 180–195 (2007)

    MATH  Google Scholar 

  50. Lepidi, M.: Multi-parameter perturbation methods for the eigensolution sensitivity analysis of nearly-resonant non-defective multi-degree-of-freedom systems. J. Sound Vib. 332(4), 1011–1032 (2013)

    Google Scholar 

  51. Nayfeh, A.H.: Nonlinear interactions: analytical, computational and experimental methods. Wiley, Hoboken (2000)

    MATH  Google Scholar 

  52. Haddow, A.G., Barr, A.D.S., Mook, D.T.: Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure. J. Sound Vib. 97(3), 451–473 (1984)

    MathSciNet  Google Scholar 

  53. Nayfeh, A.H., Balachandran, B.: Experimental investigation of resonantly forced oscillations of a two-degree-of-freedom structure. Int. J. Non-Linear Mech. 25, 199–209 (1990)

    Google Scholar 

  54. Champneys, A.: Dynamics of parametric excitation. In Encyclopedia of Complexity and Systems Science (pp. 2323–2345). Springer, New York, NY (2009)

  55. Doedel, E., Kernevez, J.P.: AUTO: Software for continuation and bifurcation problem in ordinary differential equation. Applied Mathematics Report, California Institute of Technology (1986)

Download references

Acknowledgements

The research leading to these results has received funding from the Italian Government under Cipe resolution no. 135 (Dec. 21, 2012), project INnovating City Planning through Information and Communication Technologies (authors V.G., F.P. and U.D.S.). The author M.L. acknowledges the financial support of the (MURST) Italian Department for University and Scientific and Technological Research in the framework of the research MIUR Prin15 project 2015LYYXA8, “Multi-scale mechanical models for the design and optimization of micro-structured smart materials and metamaterials.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Lepidi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The modal coefficients related to masses (set to unity by virtue of the mode normalization), dampings and external forces in the equations of motion (23) governing the reduced 1dof and 2dofs models are

$$\begin{aligned}&m_{\textit{ij}} = \frac{\beta _c^2 }{\omega ^{2}}I_{\textit{ij}}^c +\mu \alpha \chi \frac{\beta _{b1}^4 }{\omega ^{2}}I_{\textit{ij}}^{b1}+ \nonumber \\&\qquad +\mu \alpha \chi \frac{\beta _{b2}^4 }{\omega ^{2}}I_{\textit{ij}}^{b2} \nonumber \\&\zeta _{\textit{ij}} =\frac{2\xi _c }{\omega }I_{\textit{ij}}^c +\mu \alpha \chi \frac{2\xi _{b1} }{\omega }I_{\textit{ij}}^{b1}+ \nonumber \\&\qquad +\mu \alpha \chi \frac{2\xi _{b2} }{\omega }I_{\textit{ij}}^{b2}\nonumber \\&p_i \left( \tau \right) = f_c \left( \tau \right) F_{i}^c +\alpha f_{b1} \left( \tau \right) F_{i}^{b1}+ \nonumber \\&\qquad \qquad +\,\alpha f_{b2} \left( \tau \right) F_{i}^{b2} \end{aligned}$$
(A.1)

while the coefficients of the quadratic and cubic terms are defined as

$$\begin{aligned} c_{ij}^n= & {} \mu \left[ {\begin{array}{l} \left( {4\delta J_{ij}^n -\frac{1}{2}G_{ij}^n } \right) \left( {2-\delta _{ij} } \right) + \\ -C_{ij}^n -D_{ij}^n \left( {1-\delta _{ij} } \right) \\ \end{array}} \right] \nonumber \\ c_{\textit{ijh}}^n= & {} -\frac{1}{2}\mu \delta H_{ijh}^n \delta _{ij} +\nonumber \\&\quad -\left[ {\left( {\mu \delta Q_{\textit{ijh}}^n +\frac{1}{2}P_{\textit{ijh}}^n } \right) \left( {1-\delta _{\textit{ij}} } \right) } \right] \end{aligned}$$
(A.2)

where \(\delta _{ij}\) is the Kronecker symbol, the superscript n is related to the mode (that is, \(n=1\) and \(n=2\) are referred to the first and second mode, respectively), while the subscript \(i=1,2\), \(j=1,2\) and \(h=1,2\). The following positions have been introduced to enlighten the notation in the nonlinear equations of motion (23) governing the reduced 2dofs model

$$\begin{aligned}&c_{ij}^n \rightarrow c_{ij} \, \hbox {for} \,n=1\\&c_{ij}^n \rightarrow d_{ij} \, \hbox {for} \,n=2\\&c_{ijh}^n \rightarrow c_{ijh} \, \hbox {for} \,n=1\\&c_{ijh}^n \rightarrow d_{ijh} \, \hbox {for} \,n=2 \end{aligned}$$

The following integrals have been used in Eqs. (A.1) and (A.2)

$$\begin{aligned} I_{ij}^c= & {} \int _0^1 {\varphi _{ci} } \varphi _{cj} \mathrm{d}x_c \\ I_{ij}^{b1}= & {} \int _0^1 {\varphi _{b1i} } \varphi _{b1j} \mathrm{d}x_{b1} \\ I_{ij}^{b2}= & {} \int _0^1 {\varphi _{b2i} } \varphi _{b2j} \mathrm{d}x_{b2} \\ F_{i}^c= & {} \int _0^1 {\psi _{c} } \varphi _{cj} \mathrm{d}x_c \\ F_{i}^{b1}= & {} \int _0^1 {\psi _{b1} } \varphi _{b1i} \mathrm{d}x_{b1} \\ F_{i}^{b2}= & {} \int _0^1 {\psi _{b2} } \varphi _{b2i} \mathrm{d}x_{b2} \\ J_{ij}^n= & {} \int _0^1 {{\varphi }^{\prime }_{ci} } {\varphi }^{\prime }_{cj} \mathrm{d}x_c \int _0^1 {\varphi _{cn} } \mathrm{d}x_c \\ G_{ij}^n= & {} -\alpha _{b2} \varphi _{b2n} \left( 1 \right) \int _0^1 {{\varphi }^{\prime }_{ci} \varphi _{cj} } \mathrm{d}x_c + \\&+\,\alpha _{b1} \varphi _{b1n} \left( 1 \right) \int _0^1 {{\varphi }^{\prime }_{ci} \varphi _{cj} } \mathrm{d}x_c \\ C_{ij}^n= & {} \alpha _{b2} \varphi _{b2j} \left( 1 \right) \int _0^1 {{\varphi }^{\prime \prime }_{ci} \varphi _{cn} } \mathrm{d}x_c + \\&-\,\alpha _{b1} \varphi _{b1j} \left( 1 \right) \int _0^1 {{\varphi }^{\prime \prime }_{ci} \varphi _{cn} } \mathrm{d}x_c+ \nonumber \\&+\,8\delta \int _0^1 {\varphi _{cj} } \mathrm{d}x_c \int _0^1 {{\varphi }^{\prime \prime }_{ci} \varphi _{cn} } \mathrm{d}x_c \\ D_{ij}^n= & {} \alpha _{b2} \varphi _{b2i} \left( 1 \right) \int _0^1 {{\varphi }^{\prime \prime }_{cj} \varphi _{cn} } \mathrm{d}x_c - \\&-\,\alpha _{b1} \varphi _{b1i} \left( 1 \right) \int _0^1 {{\varphi }^{\prime \prime }_{cj} \varphi _{cn} } \mathrm{d}x_c+ \nonumber \\&+\,8\delta \int _0^1 {\varphi _{ci} } \mathrm{d}x_c \int _0^1 {{\varphi }^{\prime \prime }_{cj} \varphi _{cn} } \mathrm{d}x_c \\ H_{ijk}^n= & {} \int _0^1 {{\varphi }^{\prime }_{ci} {\varphi }^{\prime }_{cj} } \mathrm{d}x_c \int _0^1 {{\varphi }^{\prime \prime }_{ck} \varphi _{cn} } \mathrm{d}x_c \\ Q_{ijk}^n= & {} \int _0^1 {{\varphi }^{\prime }_{cj} {\varphi }^{\prime }_{ck} } \mathrm{d}x_c \int _0^1 {{\varphi }^{\prime \prime }_{ck} \varphi _{cn} } \mathrm{d}x_c \\ P_{ijk}^n= & {} \int _0^1 {\left( {{\varphi }^{\prime }_{ck} } \right) ^{2}} \mathrm{d}x_c \int _0^1 {{\varphi }^{\prime \prime }_{cj} \varphi _{cn} } \mathrm{d}x_c \end{aligned}$$

where the functions \(\psi _c(x_c), \psi _{b1}(x_{b1}), \psi _{b2}(x_{b2})\) define the external loads \(p_c(x_c, \tau )=f_c(\tau )\psi _c(x_c), p_{b1}(x_{b1},\tau )=f_{b1}(\tau )\psi _{b1}(x_{b1})\) and \(p_{b2}(x_{b1},\tau )=f_{b2}(\tau )\psi _{b2}(x_{b2})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gattulli, V., Lepidi, M., Potenza, F. et al. Modal interactions in the nonlinear dynamics of a beam–cable–beam. Nonlinear Dyn 96, 2547–2566 (2019). https://doi.org/10.1007/s11071-019-04940-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04940-8

Keywords

Navigation