Skip to main content
Log in

Prediction of period doubling bifurcations in harmonically forced memristor circuits

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper studies bifurcations and complex dynamics in a class of nonautonomous oscillatory circuits with a flux-controlled memristor and harmonic forcing term. It is first shown that, as in the autonomous case, the state space of any memristor circuit of the class can be decomposed in invariant manifolds. It turns out that the memristor circuit dynamics is given by the collection of the dynamics of a family of circuits, with a nonlinear resistor in place of the memristor, which is parameterized by an additional constant input whose value depends on the initial conditions of the memristor circuit. This property makes it possible to employ the harmonic balance method in order to study the periodic solutions and their bifurcations due to changing the amplitude and the frequency of the harmonic input on a fixed manifold or due to changing the initial conditions for a fixed harmonic input. The main result is that in both of these cases the harmonic balance method is quite effective to accurately predict period doubling bifurcations of the periodic solutions. Analytical predictions are obtained in the cases of linear-plus-cubic and piecewise linear memristor flux–charge characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. For space limitations, \(L_1(\mathcal {D})\) and \(L_2(\mathcal {D})\) are expressed in terms of the related \(L_3(\mathcal {D})\).

  2. Similar results can be obtained for other kinds of bifurcations along the lines developed in [43].

References

  1. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  3. Mazumder, P., Kang, S.M., Waser, R.: Special issue on memristors: devices, models, and applications. Proc. IEEE 100(6), 1911–1919 (2012)

    Article  Google Scholar 

  4. Tetzlaff, R. (ed.): Memristors and Memristive Systems. Springer, New York (2014)

    Google Scholar 

  5. Adamatzky, A., Chua, L. (eds.): Memristor Networks. Springer, New York (2014)

    MATH  Google Scholar 

  6. Traversa, F.L., Di Ventra, M.: Universal memcomputing machines. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2702–2715 (2015)

    Article  MathSciNet  Google Scholar 

  7. Chua, L.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2), 319–368 (2015)

    Article  Google Scholar 

  8. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kumar, S., Strachan, J.P., Williams, R.S.: Chaotic dynamics in nanoscale \(\text{ NbO }_2\) Mott memristors for analogue computing. Nature 548, 318 (2017)

    Article  Google Scholar 

  10. Corinto, F., Ascoli, A., Gilli, M.: Nonlinear dynamics of memristor oscillators. IEEE Trans. Circuits Syst. I, Reg. Pap. 58(6), 1323–1336 (2011)

    Article  MathSciNet  Google Scholar 

  11. Gambuzza, L.V., Buscarino, A., Fortuna, L., Frasca, M.: Memristor-based adaptive coupling for consensus and synchronization. IEEE Trans. Circuits Syst. I: Reg. Pap. 62(4), 1175–1184 (2015)

    Article  MathSciNet  Google Scholar 

  12. Ascoli, A., Tetzlaff, R., Biolek, Z., Kolka, Z., Biolkova, V., Biolek, D.: The art of finding accurate memristor model solutions. IEEE J. Emerg. Sel. Topics Circuits Syst. 5(2), 133–142 (2015)

    Article  Google Scholar 

  13. Kim, H., Sah, M., Yang, C., Roska, T., Chua, L.O.: Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012)

    Article  Google Scholar 

  14. Kvatinsky, S., Ramadan, M., Friedman, E.G., Kolodny, A.: VTEAM: a general model for voltage-controlled memristors. IEEE Trans. Circuits Syst. II 62(8), 786–790 (2015)

    Article  Google Scholar 

  15. Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20(05), 1335–1350 (2010)

    Article  MATH  Google Scholar 

  16. Li, Q., Hu, S., Tang, S., Zeng, G.: Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. Int. J. Circuit Theory Appl. 42(11), 1172–1188 (2014)

    Article  Google Scholar 

  17. Scarabello, M.C., Messias, M.: Bifurcations leading to nonlinear oscillations in a 3D piecewise linear memristor oscillator. Int. J. Bifurc. Chaos 24(1), 1430001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Messias, M., Nespoli, C., Botta, V.A.: Hopf bifurcation from lines of equilibria without parameters in memristor oscillators. Int. J. Bifurc. Chaos 20(02), 437–450 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bao, B., Jiang, T., Xu, Q., Chen, M., Wu, H., Hu, Y.: Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn. 86(3), 1711–1723 (2016)

    Article  Google Scholar 

  20. Ponce, E., Amador, A., Ros, J.: A multiple focus-center-cycle bifurcation in 4d discontinuous piecewise linear memristor oscillators. Nonlinear Dyn. 94, 3011–3028 (2018)

    Article  Google Scholar 

  21. Yuan, F., Wang, G., Shen, Y., Wang, X.: Coexisting attractors in a memcapacitor-based chaotic oscillator. Nonlinear Dyn. 86(1), 37–50 (2016)

    Article  MathSciNet  Google Scholar 

  22. Rajagopal, K., Jafari, S., Karthikeyan, A., Srinivasan, A., Ayele, B.: Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors. Circuits Syst. Signal Process. 37(9), 3702–3724 (2018)

    Article  MathSciNet  Google Scholar 

  23. Yuan, F., Wang, G., Wang, X.: Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis. Chaos 27(3), 033103 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu, B., Wang, Y., Shen, G.: A simple meminductor-based chaotic system with complicated dynamics. Nonlinear Dyn. 88(3), 2071–2089 (2017)

    Article  MathSciNet  Google Scholar 

  25. Amador, A., Freire, E., Ponce, E., Ros, J.: On discontinuous piecewise linear models for memristor oscillators. Int. J. Bifurc. Chaos 27(06), 1730022 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ponce, E., Ros, J., Freire, E., Amador, A.: Unravelling the dynamical richness of 3d canonical memristor oscillators. Microelectron. Eng. 182, 15–24 (2017)

    Article  Google Scholar 

  27. Corinto, F., Forti, M.: Memristor circuits: flux–charge analysis method. IEEE Trans. Circuits Syst. I, Reg. Pap. 63(1), 1997–2009 (2016)

    Article  Google Scholar 

  28. Corinto, F., Forti, M.: Memristor circuits: bifurcations without parameters. IEEE Trans. Circuits Syst. I, Reg. Pap. 64(6), 1540–1551 (2017)

    Article  Google Scholar 

  29. Corinto, F., Forti, M.: Memristor circuits: pulse programming via invariant manifolds. IEEE Trans. Circuits Syst. I: Reg. Pap. 65(4), 1327–1339 (2018)

    Article  Google Scholar 

  30. Di Marco, M., Forti, M., Innocenti, G., Tesi, A.: Harmonic balance method to analyze bifurcations in memristor oscillatory circuits. Int. J. Circuit Theory Appl. 46, 66–83 (2018)

    Article  Google Scholar 

  31. Atherton, D.P.: Nonlinear Control Engineering. Van Nostrand Reinhold, London (1975)

    Google Scholar 

  32. Mees, A.I.: Dynamics of Feedback Systems. Wiley, New York (1981)

    MATH  Google Scholar 

  33. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upple Saddle River (2002)

    MATH  Google Scholar 

  34. Ahamed, A.I., Lakshmanan, M.: Discontinuity induced Hopf and Neimark–Sacker bifurcations in a memristive Murali–Lakshmanan–Chua circuit. Int. J. Bifurc. Chaos 27(06), 1730021 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu, Q., Zhang, Q., Bao, B., Hu, Y.: Non-autonomous second-order memristive chaotic circuit. IEEE Access 5, 21039–21045 (2017)

    Article  Google Scholar 

  36. Bao, B., Jiang, P., Wu, H., Hu, F.: Complex transient dynamics in periodically forced memristive Chua’s circuit. Nonlinear Dyn. 79(4), 2333–2343 (2015)

    Article  MathSciNet  Google Scholar 

  37. Ahamed, A.I., Lakshmanan, M.: Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali–Lakshmanan–Chua circuit. Int. J. Bifurc. Chaos 23(06), 1350098 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A new driven memristive chaotic circuit. In: 2013 European Conference on Circuit Theory and Design (ECCTD), pp. 1–4 (2013)

  39. Murali, K., Lakshmanan, M., Chua, L.O.: The simplest dissipative nonautonomous chaotic circuit. IEEE Trans. Circuits Syst. I 41(6), 462–463 (1994)

    Article  MATH  Google Scholar 

  40. Genesio, R., Tesi, A.: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28(3), 531–548 (1992)

    Article  MATH  Google Scholar 

  41. Piccardi, C.: Bifurcations of limit cycles in periodically forced nonlinear systems: the harmonic balance approach. IEEE Trans. Circuits Syst. I 41(12), 315–320 (1994)

    Article  MathSciNet  Google Scholar 

  42. Tesi, A., Abed, E.H., Genesio, R., Wang, H.O.: Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics. Automatica 32(9), 1255–1271 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Basso, M., Genesio, R., Tesi, A.: A frequency method or predicting limit cycle bifurcations. Nonlinear Dyn. 13, 339–360 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Bonani, F., Gilli, M.: Analysis of stability and bifurcations of limit cycles in Chua’s circuit through the harmonic-balance approach. IEEE Trans. Circuits Syst. I(46), 881–890 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Di Marco, M., Forti, M., Tesi, A.: Harmonic balance approach to predict period-doubling bifurcations in nearly-symmetric neural networks. J. Circuits Syst. Comput. 12(4), 435–460 (2003)

    Article  Google Scholar 

  46. Innocenti, G., Tesi, A., Genesio, R.: Complex behaviour analysis in quadratic jerk systems via frequency domain Hopf bifurcation. Int. J. Bifurc. Chaos 20(3), 657–667 (2010)

    Article  MATH  Google Scholar 

  47. Lu, Y., Huang, X., He, S., Wang, D., Zhang, B.: Memristor based van der Pol oscillation circuit. Int. J. Bifurc. Chaos 24(12), 1450154 (2014)

    Article  MATH  Google Scholar 

  48. Galias, Z.: Study of amplitude control and dynamical behaviors of a memristive band pass filter circuit. IEEE Trans. Circuits Syst. II 65(5), 637–641 (2018)

    Article  Google Scholar 

  49. Chandía, K.J., Bologna, M., Tellini, B.: Multiple scale approach to dynamics of an LC circuit with a charge-controlled memristor. IEEE Trans. Circuits Syst. II 65(1), 120–124 (2018)

    Article  Google Scholar 

  50. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. (TOMS) 29(2), 141–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Jimenez-Fernandez, V.M., Jimenez-Fernandez, M., Vazquez-Leal, H., Muñoz Aguirre, E., Cerecedo-Nuñez, H.H., Filobello-Niño, U.A., Castro-Gonzalez, F.J.: Transforming the canonical piecewise-linear model into a smooth-piecewise representation. SpringerPlus 5(1), 1612 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Innocenti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Innocenti, G., Di Marco, M., Forti, M. et al. Prediction of period doubling bifurcations in harmonically forced memristor circuits. Nonlinear Dyn 96, 1169–1190 (2019). https://doi.org/10.1007/s11071-019-04847-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04847-4

Keywords

Navigation