Skip to main content
Log in

Bifurcations and dynamical analysis of Coriolis-stabilized spherical lagging pendula

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of a spherical pendulum with a horizontally rotating support, exhibiting regimes of intriguing lagging behaviour in the presence of aerodynamic drag, is analysed in the present study. The dynamic equilibria of the pendulum are derived through both numerical and analytical means, with excellent experiment agreement across key system parameters. System attractors indicate the critical role played by drag in convergence towards the various equilibria. The stability of the various equilibria is also investigated. Interestingly, one of the folded states is found to be dynamically stabilized by the Coriolis force, with the resulting stability bound by a saddle-node bifurcation from below and a Hamiltonian Hopf bifurcation from above; multiple limit cycles are discovered past the Hopf point. Lastly, a theoretical analogy between the pendulum system and the triangular \(\text {L}_4\)/\(\text {L}_5\) Lagrange points in celestial mechanics is identified. The presented results are of relevance to crane systems and the mechanical modelling of cable or truss-supported structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hoang, N., Fujino, Y., Warnitchai, P.: Optimal tuned mass damper for seismic applications and practical design formulas. Eng. Struct. 30, 707 (2008)

    Article  Google Scholar 

  2. Pinkaew, T., Fujino, Y.: Effectiveness of semi-active tuned mass dampers under harmonic excitation. Eng. Struct. 23, 850 (2001)

    Article  Google Scholar 

  3. Sun, C., Nagarajaiah, S., Dick, A.J.: Experimental investigation of vibration attenuation using nonlinear tuned mass damper and pendulum tuned mass damper in parallel. Nonlinear Dyn. 78, 2699 (2014)

    Article  Google Scholar 

  4. Haddow, A.G., Shaw, S.W.: Bifurcations in the mean angle of a horizontally shaken pendulum: analysis and experiment. Nonlinear Dyn. 34, 293 (2003)

    Article  Google Scholar 

  5. Zhang, B.-L., Han, Q.-L., Zhang, X.-M.: Recent advances in vibration control of offshore platforms. Nonlinear Dyn. 89, 755 (2017)

    Article  Google Scholar 

  6. Srinivasan, B., Huguenin, P., Bonvin, D.: Global stabilization of an inverted pendulum control strategy and experimental verification. Automatica 45, 265 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Citro, R., Torre, E.G.D., D’Alessio, L., Polkovnikov, A., Babadi, M., Oka, T., Demler, E.: Dynamical stability of a many-body Kapitza pendulum. Ann. Phys. 360, 694 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Xu, C., Yu, X.: Mathematical modeling of elastic inverted pendulum control system. J. Control Theory Appl. 2, 281 (2004)

    Article  Google Scholar 

  9. Acheson, D.J., Mullin, T.: Upside-down pendulums. Nature 366, 215 (1993)

    Article  Google Scholar 

  10. Srinivasan, M., Ruina, A.: Computer optimization of a minimal biped model discovers walking and running. Nature 439, 72 (2005)

    Article  Google Scholar 

  11. Motoi, N., Motoi, N., Suzuki, T., Ohnishi, K.: A bipedal locomotion planning based on virtual linear inverted pendulum mode. IEEE Trans. Ind. Electron. 56, 54 (2009)

    Article  Google Scholar 

  12. van Soest, A.J.K., Rozendaal, L.A.: The inverted pendulum model of bipedal standing cannot be stabilized through direct feedback of force and contractile element length and velocity at realistic series elastic element stiffness. Biol. Cybern. 99, 29 (2008)

    Article  MATH  Google Scholar 

  13. Montazeri Moghadam, S., Sadeghi Talarposhti, M., Niaty, A., Towhidkhah, F., Jafari, S.: The simple chaotic model of passive dynamic walking. Nonlinear Dyn. 93, 1183 (2018)

    Article  Google Scholar 

  14. Saranlý, U., Arslan, Ö., Ankaralý, M.M., Morgül, Ö.: Approximate analytic solutions to non-symmetric stance trajectories of the passive spring-loaded inverted pendulum with damping. Nonlinear Dyn. 62, 729 (2010)

    Article  Google Scholar 

  15. Shinbrot, T., Grebogi, C., Wisdom, J., Yorke, J.A.: Chaos in a double pendulum. Am. J. Phys. 60, 491 (1992)

    Article  Google Scholar 

  16. Christini, D.J., Collins, J.J., Linsay, P.S.: Experimental control of high-dimensional chaos: the driven double pendulum. Phys. Rev. E 54, 4824 (1996)

    Article  Google Scholar 

  17. Braiman, Y., Lindner, J.F., Ditto, W.L.: Taming spatiotemporal chaos with disorder. Nature 378, 465 (1995)

    Article  Google Scholar 

  18. Matsuzaki, Y., Furuta, S.: Bifurcation analysis of the motion of an asymmetric double pendulum subjected to a follower force: codimension three problem. Nonlinear Dyn. 2, 199 (1991)

    Article  Google Scholar 

  19. Mann, B.P., Koplow, M.A.: Symmetry breaking bifurcations of a parametrically excited pendulum. Nonlinear Dyn. 46, 427 (2006)

    Article  MATH  Google Scholar 

  20. Schmitt, J.M., Bayly, P.V.: Bifurcations in the mean angle of a horizontally shaken pendulum: analysis and experiment. Nonlinear Dyn. 15, 1 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luo, A.C.J.: Resonance and stochastic layer in a parametrically excited pendulum. Nonlinear Dyn. 25, 355 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Soliman, M.S.: Global transient dynamics of nonlinear parametrically excited systems. Nonlinear Dyn. 6, 317 (1994)

    Article  Google Scholar 

  23. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: a review. Modal Anal. 9, 863 (2003)

    Article  MATH  Google Scholar 

  24. Ju, F., Choo, Y.S.: Dynamic analysis of tower cranes. J. Eng. Mech. 131, 88 (2005)

    Article  Google Scholar 

  25. Ghigliazza, R., Holmes, P.: On the dynamics of cranes, or spherical pendula with moving supports. Int. J. Non-Linear Mech. 37, 1211 (2002)

    Article  MATH  Google Scholar 

  26. Masoud, Z.N., Nayfeh, A.H., Al-Mousa, A.: Delayed position-feedback controller for the reduction of payload pendulations of rotary cranes. Modal Anal. 9, 257 (2003)

    Article  MATH  Google Scholar 

  27. Uchiyama, N., Ouyang, H., Sano, S.: Simple rotary crane dynamics modeling and open-loop control for residual load sway suppression by only horizontal boom motion. Mechatronics 23, 1223 (2013)

    Article  Google Scholar 

  28. Terashima, K., Shen, Y., Yano, K.: Modeling and optimal control of a rotary crane using the straight transfer transformation method. Control Eng. Pract. 15, 1179 (2007)

    Article  Google Scholar 

  29. Shui-Lian, C., Heng-Rui, W., Yu-Hang, Y., DaWei, D., Zhang, Y.-X.: Lag pendulum model and its application in wind resistance stability of the structure. DEStech Trans. Soc. Sci. Educ. Hum. Sci. (2017). https://doi.org/10.12783/dtssehs/icesd2017/11642

  30. Brucker, E., Gurfil, P.: Analysis of gravity-gradient-perturbed rotational dynamics at the collinear lagrange points. J. Astronaut. Sci. 55, 271 (2007)

    Article  Google Scholar 

  31. Selaru, D., Cucu-Dumitrescu, C.: Infinitesimal orbits around lagrange points in the elliptic, restricted three-body problem. Celest. Mech. Dyn. Astron. 61, 333 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schnittman, J.D.: The lagrange equilibrium points L 4 and L 5 in black hole binary system. Astrophys. J. 724, 39 (2010)

    Article  Google Scholar 

  33. Murray, N., Holman, M.: The role of chaotic resonances in the solar system. Nature 410, 773 (2001)

    Article  Google Scholar 

  34. Sicardy, B.: Stability of the triangular Lagrange points beyond Gascheau’s value. Celest. Mech. Dyn. Astron. 107, 145 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gascheau, G.: Examen d’une classe équations differentielles et applications un cas particulier du problme des trois corps. C. R. Acad. Sci. 16, 393 (1843)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Hao Cheong.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Stability threshold for \(\theta _{e_1}\)

A derivation similar to Ghigliazza and Holmes [25] is followed. At the saddle-node bifurcation, \(q\equiv {b/\ell }=-\sin ^3{\theta }\). The stability threshold for \(\theta _{e_1}\) occurs when the eigenvalues in Eq. (8) are degenerate, disregarding sign; this occurs when \(p\equiv {\alpha -\sqrt{\beta }}=0\), with solution \(q=(4/5)^{3/2}\equiv \xi \). Recall that \(\lim _{\Omega \rightarrow \infty } \theta _{e_1} = -\arcsin {b/\ell }=\zeta \), and therefore \((b/\ell )^{1/3}\le {-\sin {\theta }}<b/\ell \). When \(q>\xi \), \(p<0\,\forall \, \theta \in \left( -\arcsin {b/\ell },-\arcsin {(b/\ell )^{1/3}}\right) \), as can be deduced by noting that \(p'(\theta )<0\) within the same domain. This yields complex eigenvalues and indicates instability. On the other hand, \(q<\xi \) yields imaginary eigenvalues and indicates stability.

Fig. 11
figure 11

Potential landscapes for \(b=15\hbox { cm}\), \(\ell =47\hbox { cm}\), \(g=9.78\hbox { m/s}^{2}\), \(\Omega _{\text {SN}}=7.31\hbox { rad/s}\). a\(\Omega =5\hbox { rad/s}<\Omega _{\text {SN}}\)b\(\Omega =15\hbox { rad/s}>\Omega _{\text {SN}}\)

Appendix B: Potential stability analysis

The stability of the various dynamic equilibria can alternatively be analysed by examining the dimensionless potential of the system, given by

$$\begin{aligned} V(\theta ,\phi )&=A^{-2}B(1-\cos {\theta })\nonumber \\&\quad -\frac{1}{2}\left( 1+A^{-2} \sin ^2{\theta }+2A^{-1}\sin {\theta }\cos {\phi }\right) , \end{aligned}$$
(B1)

where A and B are defined in Eq. (3), and negligible drag has been assumed. The potential landscapes of the system are shown in Fig. 11, plotted for \(\Omega <\Omega _{\text {SN}}\) and \(\Omega >\Omega _{\text {SN}}\), respectively. The three dynamic equilibria are, if present, aligned on the \(\phi =0\) plane. When \(\Omega <\Omega _{\text {SN}}\), it is clear that there exists no equilibria for \(\theta \in (-\pi /2,0)\). On the other hand, when \(\Omega >\Omega _{\text {SN}}\), we observe the formation of the two discrete equilibria \(e_1\) and \(e_2\). In particular, note that \(e_0\) is always within a potential well, consistent with its apparent stability observed in experiments. Similarly, \(e_2\) is located on a potential saddle, corroborating its instability in experiments. However, \(e_1\) is located atop a potential hill, contradictory to its stability in experiments. This suggests that the stability of \(e_1\) cannot be attributed to conservative forces.

Appendix C: Drag characterization

Figure 12 illustrates the stationary (\(\Omega =0\)) decay envelope of the system perturbed from equilibrium in the xz plane. Numerical nonlinear regression of Eq. (5) against the experimentally measured decay envelope allows the determination of appropriate values for the drag coefficients \(\mu _1\) and \(\mu _2\), which are then consistently used throughout this paper.

Fig. 12
figure 12

Stationary decay envelope for \(m=19\hbox { g}\), \(\ell =4\hbox { cm}\), \(\mu _1=\kappa \cdot 1.52\hbox { mg/s}\) and \(\mu _2=\kappa \cdot 4.56\hbox { mg/m}\), where \(\kappa =200\). Experiment error bars are too small to be visible

Fig. 13
figure 13

Potential landscape of a two-body celestial system in the rotating frame. The \(\text {L}_1\)\(\text {L}_3\) Lagrange points are located on potential saddles, while the \(\text {L}_4\)/\(\text {L}_5\) Lagrange points are located on Coriolis-stabilized hills

Appendix D: \(\text {L}_4\)/\(\text {L}_5\) Lagrange points

Figure 13 illustrates the potential landscape due to gravitational and centrifugal forces in the rotating frame of two masses orbiting about their barycenter; the \(\text {L}_1\)\(\text {L}_5\) Lagrange points are the five equilibrium positions.

A comparison can be made between the linearized equations of motion of the lagging pendulum, as expressed in Eq. (7), and that of objects in the neighbourhood of the \(\text {L}_4\)/\(\text {L}_5\) Lagrange points:

$$\begin{aligned} \begin{pmatrix} \dot{x} \\ \ddot{x} \\ \dot{y} \\ \ddot{y} \end{pmatrix}&= \begin{bmatrix} 0&1&0&0\\ \frac{3}{4}\Omega&0&\eta \Omega ^{2}&{2\Omega } \\ 0&0&0&1 \\ \eta \Omega ^{2}&{-2\Omega }&\frac{9}{4}\eta ^{2}&0 \end{bmatrix}\times \begin{pmatrix} x \\ \dot{x} \\ y \\ \dot{y} \end{pmatrix};\nonumber \\ \eta&=\frac{3\sqrt{3}}{4}\cdot \frac{m_1-m_2}{m_1+m_2}, \end{aligned}$$
(D1)

where the terms \(\mathbf {J}_{24}\) and \(\mathbf {J}_{42}\) in Eq. (7), as well as the \(\pm {\,}{2\Omega }\) terms in Eq. (D1), are the Coriolis terms. It is immediately apparent that the two systems share fundamental similarities. Indeed, dynamics in the vicinity of the \(\text {L}_4\)/\(\text {L}_5\) Lagrange points are Coriolis-stabilized and also undergo a Hamiltonian Hopf bifurcation when the mass ratio parameter exceeds \(m_2/m_1>2/(25+3\sqrt{69})\) [34, 35].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lendermann, M., Koh, J.M., Tan, J.S.Q. et al. Bifurcations and dynamical analysis of Coriolis-stabilized spherical lagging pendula. Nonlinear Dyn 96, 921–931 (2019). https://doi.org/10.1007/s11071-019-04830-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04830-z

Keywords

Navigation