On the dynamics of a vibration isolator with geometrically nonlinear inerter

  • Fernando de Haro Moraes
  • Marcos Silveira
  • Paulo J. Paupitz Gonçalves
Original Paper
  • 14 Downloads

Abstract

The inerter is a two-terminal mechanical element that produces forces directly proportional to the relative acceleration between these terminals. The linear behaviour of this element has already been described in the literature. In this work, the nonlinear effects of the geometrical arrangement of the inerter are investigated in terms of vibration isolation and compared to the traditional arrangement. The analysis comprises the use of harmonic-balanced method applied to the exact equation, as well as approximations for low amplitude and high amplitude. Numerical analysis is used to complement the investigation. Comparison with classic vibration isolators shows possible benefits for high frequency regimes. The effects from the geometrical nonlinearity vanish when the amplitude of motion is large.

Keywords

Inerter Vibration isolation Geometrical nonlinearity 

Supplementary material

References

  1. 1.
    Al-Shudeifat, M.A.: Amplitudes decay in different kinds of nonlinear oscillators. J. Vib. Acoust. 137(3), 031,012 (2015)CrossRefGoogle Scholar
  2. 2.
    Avramov, K., Gendelman, O.: Interaction of elastic system with snap-through vibration absorber. Int. J. Non Linear Mech. 44(1), 81–89 (2009)CrossRefMATHGoogle Scholar
  3. 3.
    Bird, W.: Antivibration suspension device, p. 1,506,557. US Patent (1924)Google Scholar
  4. 4.
    Carrella, A., Brennan, M., Waters, T.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3), 678–689 (2007)CrossRefGoogle Scholar
  5. 5.
    Evangelou, S., Limebeer, D.J., Sharp, R.S., Smith, M.C.: Steering compensation for high-performance motorcycles. In: 43rd IEEE Conference on Decision and Control, 2004. CDC, vol. 1, pp. 749–754. IEEE (2004)Google Scholar
  6. 6.
    Flannelly, W.G.: Dynamic anti-resonant vibration isolator, p. 3,445,080. US Patent (1969)Google Scholar
  7. 7.
    Frahm, H.: Device for damping vibrations of bodies, p. 989,958. US Patent (1911)Google Scholar
  8. 8.
    Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F., Ulerich, R.: Gnu scientific library reference manual. ISBN: 0954612078. Library available online at http://www.gnu.org/software/gsl (2015)
  9. 9.
    Gonzalez-Buelga, A., Lazar, I.F., Jiang, J.Z., Neild, S.A., Inman, D.J.: Assessing the effect of nonlinearities on the performance of a tuned inerter damper. Struct. Control Health Monit. 24(3), e1879–n/a (2017). E1879 STC-15-0213.R1Google Scholar
  10. 10.
    Goodwin, A.: Vibration isolators, p. 3,322,379 A. US Patent (1967)Google Scholar
  11. 11.
    Hamdan, M., Dado, M.: Large amplitude free vibrations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. J. Sound Vib. 206(2), 151–168 (1997)CrossRefGoogle Scholar
  12. 12.
    Hao, Z., Cao, Q., Wiercigroch, M.: Nonlinear dynamics of the quasi-zero-stiffness sd oscillator based upon the local and global bifurcation analyses. Nonlinear Dyn. 87(2), 987–1014 (2017)CrossRefGoogle Scholar
  13. 13.
    Ibrahim, R.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3), 371–452 (2008)CrossRefGoogle Scholar
  14. 14.
    Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001). http://www.scipy.org/
  15. 15.
    Liu, C., Jing, X.: Vibration energy harvesting with a nonlinear structure. Nonlinear Dyn. 84(4), 2079–2098 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Liu, Y., Chen, M.Z., Tian, Y.: Nonlinearities in landing gear model incorporating inerter. In: 2015 IEEE International Conference on Information and Automation, pp. 696–701. IEEE (2015)Google Scholar
  17. 17.
    Marinca, V., Herisanu, N.: Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches. Springer, Berlin (2012)MATHGoogle Scholar
  18. 18.
    McKerns, M.M., Strand, L., Sullivan, T., Fang, A., Aivazis, M.A.: Building a framework for predictive science. arXiv preprint arXiv:1202.1056 (2012)
  19. 19.
    Nordin, M., Galic’, J., Gutman, P.O.: New models for backlash and gear play. Int. J. Adapt. Control Signal Process. 11(1), 49–63 (1997)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Papageorgiou, C., Houghton, N.E., Smith, M.C.: Experimental testing and analysis of inerter devices. J. Dyn. Syst. Meas. Control 131(1), 011,001 (2009)CrossRefGoogle Scholar
  21. 21.
    Papageorgiou, C., Smith, M.C.: Laboratory experimental testing of inerters. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05, pp. 3351–3356. IEEE (2005)Google Scholar
  22. 22.
    Roberson, R.: Synthesis of a nonlinear dynamic vibration absorber. J. Frankl. Inst. 254, 205–220 (1952)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sapsis, T.P., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments. J. Vib. Acoust. 134(1), 011,016 (2012)CrossRefGoogle Scholar
  24. 24.
    Shaw, A., Neild, S., Wagg, D., Weaver, P., Carrella, A.: A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation. J. Sound Vib. 332(24), 6265–6275 (2013)CrossRefGoogle Scholar
  25. 25.
    Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Autom. Control 47(10), 1648–1662 (2002)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Smith, M.C., Walker, G.W.: A mechanical network approach to performance capabilities of passive suspensions. In: Proceedings of the Workshop Modelling and Control of Mechanical Systems, pp. 103–117. Imperial College Press (1997)Google Scholar
  27. 27.
    Smith, M.C., Wang, F.C.: Controller parameterization for disturbance response decoupling: application to vehicle active suspension control. IEEE Trans. Control Syst. Technol. 10(3), 393–407 (2002)CrossRefGoogle Scholar
  28. 28.
    Starosvetsky, Y., Gendelman, O.: Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J. Sound Vib. 324, 916–939 (2009)CrossRefGoogle Scholar
  29. 29.
    Sun, J., Huang, X., Liu, X., Xiao, F., Hua, H.: Study on the force transmissibility of vibration isolators with geometric nonlinear damping. Nonlinear Dyn. 74(4), 1103–1112 (2013)CrossRefGoogle Scholar
  30. 30.
    Tang, B., Brennan, M.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332(3), 510–520 (2013)CrossRefGoogle Scholar
  31. 31.
    Ushijima, T., Takano, K., Kojima, H.: High performance hydraulic mount for improving vehicle noise and vibration. Technical report, SAE Technical Paper (1988)Google Scholar
  32. 32.
    Vakakis, A.: Inducing passive nonlinear energy sinks in linear vibrating systems. J. Vib. Acoust. 123(3), 324–332 (2001)CrossRefGoogle Scholar
  33. 33.
    Wang, F.C., Liao, M.K., Liao, B.H., Su, W.J., Chan, H.A.: The performance improvements of train suspension systems with mechanical networks employing inerters. Veh. Syst. Dyn. 47(7), 805–830 (2009)CrossRefGoogle Scholar
  34. 34.
    Wang, F.C., Su, W.J.: Inerter nonlinearities and the impact on suspension control. In: 2008 American Control Conference, pp. 3245–3250 (2008)Google Scholar
  35. 35.
    Xin, D., Yuance, L., Michael, Z.C.: Application of inerter to aircraft landing gear suspension. In: Control Conference (CCC), 2015 34th Chinese, pp. 2066–2071. IEEE (2015)Google Scholar
  36. 36.
    Yilmaz, C., Kikuchi, N.: Analysis and design of passive band-stop filter-type vibration isolators for low-frequency applications. J. Sound Vib. 291(3), 1004–1028 (2006)CrossRefGoogle Scholar
  37. 37.
    Yu, Y., Naganathan, N.G., Dukkipati, R.V.: A literature review of automotive vehicle engine mounting systems. Mech. Mach. Theory 36(1), 123–142 (2001)CrossRefMATHGoogle Scholar
  38. 38.
    Zhang, Z., Chen, M.Z., Huang, L.: Frequency response of a suspension system with inerter and play. In: BEIJING. The 21th international congress of sound and vibration (2014)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.São Paulo Federal Institute - IFSPAraraquaraBrazil
  2. 2.School of Engineering, BauruState University of São Paulo - UNESPBauruBrazil

Personalised recommendations