Skip to main content
Log in

Families of exact solutions of a new extended \(\varvec{(2+1)}\)-dimensional Boussinesq equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new variant of the \((2+1)\)-dimensional [\((2+1)d\)] Boussinesq equation was recently introduced by Zhu [Line soliton and rational solutions to (2+1)-dimensional Boussinesq equation by Dbar problem, 2017. arXiv:1704.02779v2; see eq. (3)]. First, we derive in this paper the one-soliton solutions of both bright and dark types for the extended \((2+1)d\) Boussinesq equation by using the traveling wave method. Second, N-soliton, breather, and rational solutions are obtained by using the Hirota bilinear method and the long-wave limit. Nonsingular rational solutions of two types were obtained analytically, namely (i) rogue wave solutions having the form of W-shaped lines waves and (ii) lump-type solutions. Two generic types of semi-rational solutions were also put forward. The obtained semi-rational solutions are as follows: (iii) a hybrid of a first-order lump and a bright one-soliton solution and (iv) a hybrid of a first-order lump and a first-order breather.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  MATH  Google Scholar 

  2. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  MATH  Google Scholar 

  3. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media. Sov. J. Exp. Theor. Phys. 34, 62–69 (1972)

    Google Scholar 

  4. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763–915 (1989)

    Article  Google Scholar 

  6. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  7. Kivshar, Y.S., Agrawal, G.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, London (2003)

    Google Scholar 

  8. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, R53–R72 (2005)

    Article  Google Scholar 

  9. Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhao, C., Gao, Y.T., Lan, Z.Z., Yang, J.W., Su, C.Q.: Dark soliton interactions for a fifth-order nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain. Phys. Lett. B 30, 1650312 (2016)

    Google Scholar 

  11. Lan, Z.Z., Gao, Y.T., Yang, J.W., Su, C.Q., Wang, Q.M.: Solitons, B\(\ddot{a}\)cklund transformation and Lax pair for a (2+1)-dimensional B-type Kadomtsev–Petviashvili equation in the fluid/plasma mechanics. Mod. Phys. Lett. B 30, 1650265 (2016)

    Article  Google Scholar 

  12. Konotop, V.V., Yang, J.K., Zezyulin, D.A.: Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)

    Article  Google Scholar 

  13. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observations of picosecond plise narrowing and solitons in optical fibers. IEEE J. Quantum Electron. 17, 2378–2378 (1980)

    Article  Google Scholar 

  14. Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation is photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1148 (2006)

    Article  Google Scholar 

  15. Solli, D.R., Ropers, C., Jalali, B.: Active control of rogue waves for stimulated supercontinuum generation. Phys. Rev. Lett. 101, 233902 (2008)

    Article  Google Scholar 

  16. Dudley, J.M., Genty, G., Dias, F., Kibler, B., Akhmediev, N.: Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009)

    Article  Google Scholar 

  17. Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    Article  Google Scholar 

  18. Ruter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)

    Article  Google Scholar 

  19. Agrawal, G.P.: Nolinear Fiber Optics, 5th edn. Academic Press, London (2013)

    Google Scholar 

  20. Bagnato, V.S., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Mihalache, D.: Bose–Einstein condensation: twenty years after. Rom. Rep. Phys. 67, 5–50 (2015)

    Google Scholar 

  21. Suchkov, S.V., Sukhorukov, A.A., Huang, J.H., Dmitriev, S.V., Lee, C.H., Kivshar, Y.S.: Nonlinear switching and solitons in PT-symmetric photonic systems. Laser Photonics Rev. 10, 177–213 (2016)

    Article  Google Scholar 

  22. Ohta, Y., Yang, J.K.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86, 036604 (2012)

    Article  Google Scholar 

  23. Ohta, Y., Yang, J.K.: Dynamics of rogue waves in the Davey–Stewartson II equation. J. Phys. A Math. Theor. 46, 105202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photonics 8, 755–764 (2014)

    Article  Google Scholar 

  25. Dubard, P., Matveev, V.B.: Multi-rogue waves solutions: from the NLS to the KP-I equation. Nonlinearity 26, 93–125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Qian, C., Rao, J.G., Liu, Y.B., He, J.S.: Rogue waves in the three-dimensional Kadomtsev–Petviashvili equation. Chin. Phys. Lett. 33, 110201 (2016)

    Article  Google Scholar 

  27. Mu, G., Qin, Z.Y.: Two spatial dimensional N-rogue waves and their dynamics in Mel’nikov equation. Nonlinear Anal. Real World Appl. 18, 1–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, J.K.: Partially PT symmetric optical potentials with all-real spectra and soliton families in multidimensions. Opt. Lett. 39, 1133–1136 (2014)

    Article  Google Scholar 

  29. Zhang, Y., Sun, Y.B., Xiang, W.: The rogue waves of the KP equation with self-consistent sources. Appl. Math. Comput. 263, 204–213 (2015)

    MathSciNet  Google Scholar 

  30. Rao, J.G., Wang, L.H., Zhang, Y., He, J.S.: Rational solutions for the Fokas system. Commun. Theor. Phys. 64, 605–618 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mirzazadeh, M., Eslami, M., Biswas, A.: 1-Soliton solution of KdV6 equation. Nonlinear Dyn. 80, 387–396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81, 277–282 (2015)

    Article  MATH  Google Scholar 

  33. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319–324 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yuan, F., Rao, J.G., Porsezian, K., Mihalache, D., He, J.S.: Various exact rational solutions of the two-dimensional Maccari’s system. Rom. J. Phys. 61, 378–399 (2016)

    Google Scholar 

  35. Chen, S., Grelu, P., Mihalache, D., Baronio, F.: Families of rational soliton solutions of the Kadomtsev–Petviashvili I equation. Rom. Rep. Phys. 68, 1407–1424 (2016)

    Google Scholar 

  36. Wazwaz, A.M., Xu, G.Q.: An extended modified KdV equation and its Painlevé integrability. Nonlinear Dyn. 86, 1455–1460 (2016)

    Article  MATH  Google Scholar 

  37. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Triki, H., Leblond, H., Mihalache, D.: Soliton solutions of nonlinear diffusion-reaction-type equations with time-dependent coefficients accounting for long-range diffusion. Nonlinear Dyn. 86, 2115–2126 (2016)

    Article  MathSciNet  Google Scholar 

  39. Mihalache, D.: Multidimensional localized structures in optical and matter-wave media: a topical survey of recent literature. Rom. Rep. Phys. 69, 403 (2017)

    Google Scholar 

  40. Xing, Q.X., Wu, Z.W., Mihalache, D., He, J.S.: Smooth positon solutions of the focusing modified Korteweg–de Vries equation. Nonlinear Dyn. 89, 2299–2310 (2017)

    Article  MathSciNet  Google Scholar 

  41. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    Article  MATH  Google Scholar 

  42. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 2962–2964 (2009)

    Google Scholar 

  43. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Vector rogue waves in binary mixtures of Bose-Einstein condensates. Eur. Phys. J. Spec. Top. 185, 169–180 (2010)

    Article  Google Scholar 

  44. Montina, A., Bortolozzo, U., Residori, S., Arecchi, F.T.: Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. Phys. Rev. Lett. 103, 173901 (2009)

    Article  Google Scholar 

  45. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature (London) 450, 1054–1057 (2007)

    Article  Google Scholar 

  46. Elawady, E., Moslem, W.M.: On a plasma having nonextensive electrons and positrons: rogue and solitary wave propagation. Phys. Plasmas 18, 082306 (2011)

    Article  Google Scholar 

  47. Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)

    Article  Google Scholar 

  48. Ganshin, A.N., Efimov, V.B., Kolmakov, G.V., Mezhov-Deglin, L.P., Mcclintock, P.V.E.: Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys. Rev. Lett. 101, 065303 (2008)

    Article  Google Scholar 

  49. Stenflo, L., Marklund, J.: Rogue waves in the atmosphere. Plasma Phys. 76, 293–295 (2010)

    Article  Google Scholar 

  50. Peregrine, D.H.: Water waves, nonlinear Schrödinger equation and their solutions. Anziam J. 25, 16–43 (1983)

    MathSciNet  MATH  Google Scholar 

  51. Ohta, Y., Yang, J.K.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A 468, 1716–1740 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Guo, B., Ling, L., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Article  Google Scholar 

  53. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Circular rogue wave clusters. Phys. Rev. E 84, 056611 (2011)

    Article  MATH  Google Scholar 

  54. Ankiewicz, A., Kedziora, D.J., Akhmediev, N.: Rogue wave triplets. Phys. Lett. A 375, 2782–2785 (2011)

    Article  MATH  Google Scholar 

  55. Ankiewicz, A., Akhmediev, N.: Multi-rogue waves and triangular numbers. Rom. Rep. Phys. 69, 104 (2017)

    Google Scholar 

  56. Dubard, P., Gaillard, P., Klein, C., Matveev, V.B.: On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 185, 247–258 (2010)

    Article  Google Scholar 

  57. Dubard, P., Matveev, V.B.: Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation. Nat. Hazards Earth. Syst. Sci. 11, 667–672 (2011)

    Article  Google Scholar 

  58. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  MATH  Google Scholar 

  59. He, J.S., Zhang, H.R., Wang, L.H., Porsezian, K., Fokas, A.S.: Generating mechanism for higher-order rogue waves. Phys. Rev. E 87, 052914 (2013)

    Article  Google Scholar 

  60. He, J.S., Xu, S.W., Porsezian, K.: N-order bright and dark rogue waves in a resonant erbium-doped fiber system. Phys. Rev. E 86, 066603 (2012)

    Article  Google Scholar 

  61. Wang, X., Li, Y.Q., Huang, F., Chen, Y.: Rogue wave solutions of AB system. Commun. Nonlinear Sci. Numer. Simul. 20, 434–442 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. Qiu, D.Q., He, J.S., Zhang, Y.S., Porsezian, K.: The Darboux transformation of the Kundu–Eckhaus equation. Proc. R. Soc. A 471, 20150326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wang, L.H., Porsezian, K., He, J.S.: Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation. Phys. Rev. E 87, 053202 (2013)

    Article  Google Scholar 

  64. Chen, S., Baronio, F., Soto-Crespo, J.M., Grelu, P., Mihalache, D.: Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems. J. Phys. A Math. Theor. 50, 463001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  65. Biswas, A., Milovic, D., Ranasinghe, A.: Solitary waves of Boussinesq equation in a power law media. Commun. Nonlinear Sci. Numer. Simul. 14, 3738–3742 (2009)

    Article  MATH  Google Scholar 

  66. Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Springer, New York (2002)

    MATH  Google Scholar 

  67. Johnpillai, A.G., Kara, A.H.: Nonclassical potential symmetry generators of differential equations. Nonlinear Dyn. 30, 167–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  68. Krishnan, E.V., Peng, Y.: A new solitary wave solution for the new Hamiltonian amplitude equation. J. Phys. Soc. Jpn. 74, 896–897 (2007)

    Article  MATH  Google Scholar 

  69. Peng, Y.: Exact periodic wave solutions to a new Hamiltonian amplitude equation. J. Phys. Soc. Jpn. 72, 1356–1359 (2003)

    Article  MATH  Google Scholar 

  70. Clarkson, P.A., Kruskal, M.D.: New similarity reductions of the Boussinesq equation. J. Math. Phys. 30, 2201–2213 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  71. Clarkson, P.A.: New exact solution of the Boussinesq equation. Eur. J. Appl. Math. 1, 279–300 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  72. Clarkson, P.A., Mansfield, E.L.: On shallow water wave equation. Nonlinearity 7, 975–1000 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  73. Clarkson, P.A.: Rational solutions of the Boussinesq equation. Anal. Appl. 6, 349–369 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  74. Krishnan, E.V., Kumar, S., Biswas, A.: Solitons and other nonlinear waves of the Boussinesq equation. Nonlinear Dyn. 70, 1213–1221 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  75. Ablowitz, M.J., Haberman, R.: Resonantly coupled nonlinear evolution equations. J. Math. Phys. 16, 2301–2305 (1975)

    Article  MathSciNet  Google Scholar 

  76. Zakharov, V.E.: On stochastization of one-dimensional chains of nonlinear oscillators. Sov. Phys. JETP 38, 108–110 (1974)

    Google Scholar 

  77. Rao, J.G., Liu, Y.B., Qian, C., He, J.S.: Rogue waves and hybrid solutions of the Boussinesq equation. Z. Naturforsch. A 72, 307–314 (2017)

    Google Scholar 

  78. Li, Y.S., Gu, X.S.: Generating solution of Boussinesq equation by Darboux transformation of three order eigenvalue differential equations. Ann. Differ. Equ. 4, 419–422 (1986)

    MathSciNet  MATH  Google Scholar 

  79. Toda, M.: Studies of a nonlinear lattice. Phys. Rep. 18, 1–123 (1975)

    Article  Google Scholar 

  80. Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  81. Clarkson, P.A., Dowie, E.: Rational solutions of the Boussinesq equation and applications to rogue waves. Trans. Math. Appl. 1, 1 (2017)

    MATH  Google Scholar 

  82. Zhu, J.Y.: Line-soliton and rational solutions to (2+1)-dimensional Boussinesq equation by Dbar-problem. arXiv:1704.02779v2 (2017)

  83. Yuan, F., Qiu, D.Q., Liu, W., Porsezian, K., He, J.S.: On the evolution of a rogue wave along the orthogonal direction of the (t, x)-plane. Commun. Nonlinear Sci. Numer. Simul. 44, 245–257 (2017)

    Article  MathSciNet  Google Scholar 

  84. Qiu, D.Q., Zhang, Y.S., He, J.S.: The rogue wave solutions of a new (2+1)-dimensional equation. Commun. Nonlinear Sci. Numer. Simul. 30, 307–315 (2016)

    Article  MathSciNet  Google Scholar 

  85. Zhang, Y.S., Guo, L.J., Chabchoub, A., He, J.S.: Higher-order rogue wave dynamics for a derivative nonlinear Schrödinger equation. Rom. J. Phys. 62, 102 (2017)

    Google Scholar 

  86. He, J.S., Wang, L.H., Li, L.J., Porsezian, K., Erdlyi, R.: Few-cycle optical rogue waves: complex modified Korteweg–de Vries equation. Phys. Rev. E 89, 062917 (2014)

    Article  Google Scholar 

  87. Hirota, R.: The direct method in soliton theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  88. Rao, J.G., Porsezian, K., He, J.S.: Semi-rational solutions of the third-type Davey–Stewartson equation. Chaos 27, 083115 (2017)

    Article  MathSciNet  Google Scholar 

  89. Rao, J.G., Cheng, Y., He, J.S.: Rational and semi-rational solutions of the nonlocal Davey–Stewartson equations. Stud. Appl. Math. 139, 568–598 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  90. Ablowitz, M.J., Satsuma, J.: Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys. 19, 2180–2186 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  91. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSF of China under Grant No. 11671219 and the K.C. Wong Magna Fund in Ningbo University. We thank other members in our group at Ningbo University for many useful discussions on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong He.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., He, J. & Mihalache, D. Families of exact solutions of a new extended \(\varvec{(2+1)}\)-dimensional Boussinesq equation. Nonlinear Dyn 91, 2593–2605 (2018). https://doi.org/10.1007/s11071-017-4033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-4033-9

Keywords

Navigation