Nonlinear Dynamics

, Volume 91, Issue 4, pp 2593–2605 | Cite as

Families of exact solutions of a new extended \(\varvec{(2+1)}\)-dimensional Boussinesq equation

Original Paper
  • 63 Downloads

Abstract

A new variant of the \((2+1)\)-dimensional [\((2+1)d\)] Boussinesq equation was recently introduced by Zhu [Line soliton and rational solutions to (2+1)-dimensional Boussinesq equation by Dbar problem, 2017. arXiv:1704.02779v2; see eq. (3)]. First, we derive in this paper the one-soliton solutions of both bright and dark types for the extended \((2+1)d\) Boussinesq equation by using the traveling wave method. Second, N-soliton, breather, and rational solutions are obtained by using the Hirota bilinear method and the long-wave limit. Nonsingular rational solutions of two types were obtained analytically, namely (i) rogue wave solutions having the form of W-shaped lines waves and (ii) lump-type solutions. Two generic types of semi-rational solutions were also put forward. The obtained semi-rational solutions are as follows: (iii) a hybrid of a first-order lump and a bright one-soliton solution and (iv) a hybrid of a first-order lump and a first-order breather.

Keywords

\((2+1)\)-dimensional Boussinesq Solitons Breathers Rogue waves Semi-rational solutions Bilinear method 

Notes

Acknowledgements

This work is supported by the NSF of China under Grant No. 11671219 and the K.C. Wong Magna Fund in Ningbo University. We thank other members in our group at Ningbo University for many useful discussions on the paper.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interests.

References

  1. 1.
    Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)CrossRefMATHGoogle Scholar
  2. 2.
    Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)CrossRefMATHGoogle Scholar
  3. 3.
    Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media. Sov. J. Exp. Theor. Phys. 34, 62–69 (1972)Google Scholar
  4. 4.
    Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763–915 (1989)CrossRefGoogle Scholar
  6. 6.
    Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)CrossRefMATHGoogle Scholar
  7. 7.
    Kivshar, Y.S., Agrawal, G.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, London (2003)Google Scholar
  8. 8.
    Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, R53–R72 (2005)CrossRefGoogle Scholar
  9. 9.
    Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Zhao, C., Gao, Y.T., Lan, Z.Z., Yang, J.W., Su, C.Q.: Dark soliton interactions for a fifth-order nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain. Phys. Lett. B 30, 1650312 (2016)Google Scholar
  11. 11.
    Lan, Z.Z., Gao, Y.T., Yang, J.W., Su, C.Q., Wang, Q.M.: Solitons, B\(\ddot{a}\)cklund transformation and Lax pair for a (2+1)-dimensional B-type Kadomtsev–Petviashvili equation in the fluid/plasma mechanics. Mod. Phys. Lett. B 30, 1650265 (2016)CrossRefGoogle Scholar
  12. 12.
    Konotop, V.V., Yang, J.K., Zezyulin, D.A.: Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)CrossRefGoogle Scholar
  13. 13.
    Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observations of picosecond plise narrowing and solitons in optical fibers. IEEE J. Quantum Electron. 17, 2378–2378 (1980)CrossRefGoogle Scholar
  14. 14.
    Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation is photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1148 (2006)CrossRefGoogle Scholar
  15. 15.
    Solli, D.R., Ropers, C., Jalali, B.: Active control of rogue waves for stimulated supercontinuum generation. Phys. Rev. Lett. 101, 233902 (2008)CrossRefGoogle Scholar
  16. 16.
    Dudley, J.M., Genty, G., Dias, F., Kibler, B., Akhmediev, N.: Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009)CrossRefGoogle Scholar
  17. 17.
    Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)CrossRefGoogle Scholar
  18. 18.
    Ruter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)CrossRefGoogle Scholar
  19. 19.
    Agrawal, G.P.: Nolinear Fiber Optics, 5th edn. Academic Press, London (2013)Google Scholar
  20. 20.
    Bagnato, V.S., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Mihalache, D.: Bose–Einstein condensation: twenty years after. Rom. Rep. Phys. 67, 5–50 (2015)Google Scholar
  21. 21.
    Suchkov, S.V., Sukhorukov, A.A., Huang, J.H., Dmitriev, S.V., Lee, C.H., Kivshar, Y.S.: Nonlinear switching and solitons in PT-symmetric photonic systems. Laser Photonics Rev. 10, 177–213 (2016)CrossRefGoogle Scholar
  22. 22.
    Ohta, Y., Yang, J.K.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86, 036604 (2012)CrossRefGoogle Scholar
  23. 23.
    Ohta, Y., Yang, J.K.: Dynamics of rogue waves in the Davey–Stewartson II equation. J. Phys. A Math. Theor. 46, 105202 (2013)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photonics 8, 755–764 (2014)CrossRefGoogle Scholar
  25. 25.
    Dubard, P., Matveev, V.B.: Multi-rogue waves solutions: from the NLS to the KP-I equation. Nonlinearity 26, 93–125 (2013)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Qian, C., Rao, J.G., Liu, Y.B., He, J.S.: Rogue waves in the three-dimensional Kadomtsev–Petviashvili equation. Chin. Phys. Lett. 33, 110201 (2016)CrossRefGoogle Scholar
  27. 27.
    Mu, G., Qin, Z.Y.: Two spatial dimensional N-rogue waves and their dynamics in Mel’nikov equation. Nonlinear Anal. Real World Appl. 18, 1–13 (2014)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Yang, J.K.: Partially PT symmetric optical potentials with all-real spectra and soliton families in multidimensions. Opt. Lett. 39, 1133–1136 (2014)CrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Sun, Y.B., Xiang, W.: The rogue waves of the KP equation with self-consistent sources. Appl. Math. Comput. 263, 204–213 (2015)MathSciNetGoogle Scholar
  30. 30.
    Rao, J.G., Wang, L.H., Zhang, Y., He, J.S.: Rational solutions for the Fokas system. Commun. Theor. Phys. 64, 605–618 (2015)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Mirzazadeh, M., Eslami, M., Biswas, A.: 1-Soliton solution of KdV6 equation. Nonlinear Dyn. 80, 387–396 (2015)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81, 277–282 (2015)CrossRefMATHGoogle Scholar
  33. 33.
    Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319–324 (2016)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Yuan, F., Rao, J.G., Porsezian, K., Mihalache, D., He, J.S.: Various exact rational solutions of the two-dimensional Maccari’s system. Rom. J. Phys. 61, 378–399 (2016)Google Scholar
  35. 35.
    Chen, S., Grelu, P., Mihalache, D., Baronio, F.: Families of rational soliton solutions of the Kadomtsev–Petviashvili I equation. Rom. Rep. Phys. 68, 1407–1424 (2016)Google Scholar
  36. 36.
    Wazwaz, A.M., Xu, G.Q.: An extended modified KdV equation and its Painlevé integrability. Nonlinear Dyn. 86, 1455–1460 (2016)CrossRefMATHGoogle Scholar
  37. 37.
    Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Triki, H., Leblond, H., Mihalache, D.: Soliton solutions of nonlinear diffusion-reaction-type equations with time-dependent coefficients accounting for long-range diffusion. Nonlinear Dyn. 86, 2115–2126 (2016)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Mihalache, D.: Multidimensional localized structures in optical and matter-wave media: a topical survey of recent literature. Rom. Rep. Phys. 69, 403 (2017)Google Scholar
  40. 40.
    Xing, Q.X., Wu, Z.W., Mihalache, D., He, J.S.: Smooth positon solutions of the focusing modified Korteweg–de Vries equation. Nonlinear Dyn. 89, 2299–2310 (2017)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)CrossRefMATHGoogle Scholar
  42. 42.
    Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 2962–2964 (2009)Google Scholar
  43. 43.
    Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Vector rogue waves in binary mixtures of Bose-Einstein condensates. Eur. Phys. J. Spec. Top. 185, 169–180 (2010)CrossRefGoogle Scholar
  44. 44.
    Montina, A., Bortolozzo, U., Residori, S., Arecchi, F.T.: Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. Phys. Rev. Lett. 103, 173901 (2009)CrossRefGoogle Scholar
  45. 45.
    Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature (London) 450, 1054–1057 (2007)CrossRefGoogle Scholar
  46. 46.
    Elawady, E., Moslem, W.M.: On a plasma having nonextensive electrons and positrons: rogue and solitary wave propagation. Phys. Plasmas 18, 082306 (2011)CrossRefGoogle Scholar
  47. 47.
    Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)CrossRefGoogle Scholar
  48. 48.
    Ganshin, A.N., Efimov, V.B., Kolmakov, G.V., Mezhov-Deglin, L.P., Mcclintock, P.V.E.: Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys. Rev. Lett. 101, 065303 (2008)CrossRefGoogle Scholar
  49. 49.
    Stenflo, L., Marklund, J.: Rogue waves in the atmosphere. Plasma Phys. 76, 293–295 (2010)CrossRefGoogle Scholar
  50. 50.
    Peregrine, D.H.: Water waves, nonlinear Schrödinger equation and their solutions. Anziam J. 25, 16–43 (1983)MathSciNetMATHGoogle Scholar
  51. 51.
    Ohta, Y., Yang, J.K.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A 468, 1716–1740 (2012)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Guo, B., Ling, L., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)CrossRefGoogle Scholar
  53. 53.
    Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Circular rogue wave clusters. Phys. Rev. E 84, 056611 (2011)CrossRefMATHGoogle Scholar
  54. 54.
    Ankiewicz, A., Kedziora, D.J., Akhmediev, N.: Rogue wave triplets. Phys. Lett. A 375, 2782–2785 (2011)CrossRefMATHGoogle Scholar
  55. 55.
    Ankiewicz, A., Akhmediev, N.: Multi-rogue waves and triangular numbers. Rom. Rep. Phys. 69, 104 (2017)Google Scholar
  56. 56.
    Dubard, P., Gaillard, P., Klein, C., Matveev, V.B.: On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 185, 247–258 (2010)CrossRefGoogle Scholar
  57. 57.
    Dubard, P., Matveev, V.B.: Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation. Nat. Hazards Earth. Syst. Sci. 11, 667–672 (2011)CrossRefGoogle Scholar
  58. 58.
    Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)CrossRefMATHGoogle Scholar
  59. 59.
    He, J.S., Zhang, H.R., Wang, L.H., Porsezian, K., Fokas, A.S.: Generating mechanism for higher-order rogue waves. Phys. Rev. E 87, 052914 (2013)CrossRefGoogle Scholar
  60. 60.
    He, J.S., Xu, S.W., Porsezian, K.: N-order bright and dark rogue waves in a resonant erbium-doped fiber system. Phys. Rev. E 86, 066603 (2012)CrossRefGoogle Scholar
  61. 61.
    Wang, X., Li, Y.Q., Huang, F., Chen, Y.: Rogue wave solutions of AB system. Commun. Nonlinear Sci. Numer. Simul. 20, 434–442 (2015)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Qiu, D.Q., He, J.S., Zhang, Y.S., Porsezian, K.: The Darboux transformation of the Kundu–Eckhaus equation. Proc. R. Soc. A 471, 20150326 (2015)MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Wang, L.H., Porsezian, K., He, J.S.: Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation. Phys. Rev. E 87, 053202 (2013)CrossRefGoogle Scholar
  64. 64.
    Chen, S., Baronio, F., Soto-Crespo, J.M., Grelu, P., Mihalache, D.: Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems. J. Phys. A Math. Theor. 50, 463001 (2017)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Biswas, A., Milovic, D., Ranasinghe, A.: Solitary waves of Boussinesq equation in a power law media. Commun. Nonlinear Sci. Numer. Simul. 14, 3738–3742 (2009)CrossRefMATHGoogle Scholar
  66. 66.
    Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Springer, New York (2002)MATHGoogle Scholar
  67. 67.
    Johnpillai, A.G., Kara, A.H.: Nonclassical potential symmetry generators of differential equations. Nonlinear Dyn. 30, 167–177 (2002)MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Krishnan, E.V., Peng, Y.: A new solitary wave solution for the new Hamiltonian amplitude equation. J. Phys. Soc. Jpn. 74, 896–897 (2007)CrossRefMATHGoogle Scholar
  69. 69.
    Peng, Y.: Exact periodic wave solutions to a new Hamiltonian amplitude equation. J. Phys. Soc. Jpn. 72, 1356–1359 (2003)CrossRefMATHGoogle Scholar
  70. 70.
    Clarkson, P.A., Kruskal, M.D.: New similarity reductions of the Boussinesq equation. J. Math. Phys. 30, 2201–2213 (1989)MathSciNetCrossRefMATHGoogle Scholar
  71. 71.
    Clarkson, P.A.: New exact solution of the Boussinesq equation. Eur. J. Appl. Math. 1, 279–300 (1990)MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Clarkson, P.A., Mansfield, E.L.: On shallow water wave equation. Nonlinearity 7, 975–1000 (1993)MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Clarkson, P.A.: Rational solutions of the Boussinesq equation. Anal. Appl. 6, 349–369 (2008)MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    Krishnan, E.V., Kumar, S., Biswas, A.: Solitons and other nonlinear waves of the Boussinesq equation. Nonlinear Dyn. 70, 1213–1221 (2012)MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Ablowitz, M.J., Haberman, R.: Resonantly coupled nonlinear evolution equations. J. Math. Phys. 16, 2301–2305 (1975)MathSciNetCrossRefGoogle Scholar
  76. 76.
    Zakharov, V.E.: On stochastization of one-dimensional chains of nonlinear oscillators. Sov. Phys. JETP 38, 108–110 (1974)Google Scholar
  77. 77.
    Rao, J.G., Liu, Y.B., Qian, C., He, J.S.: Rogue waves and hybrid solutions of the Boussinesq equation. Z. Naturforsch. A 72, 307–314 (2017)Google Scholar
  78. 78.
    Li, Y.S., Gu, X.S.: Generating solution of Boussinesq equation by Darboux transformation of three order eigenvalue differential equations. Ann. Differ. Equ. 4, 419–422 (1986)MathSciNetMATHGoogle Scholar
  79. 79.
    Toda, M.: Studies of a nonlinear lattice. Phys. Rep. 18, 1–123 (1975)CrossRefGoogle Scholar
  80. 80.
    Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  81. 81.
    Clarkson, P.A., Dowie, E.: Rational solutions of the Boussinesq equation and applications to rogue waves. Trans. Math. Appl. 1, 1 (2017)MATHGoogle Scholar
  82. 82.
    Zhu, J.Y.: Line-soliton and rational solutions to (2+1)-dimensional Boussinesq equation by Dbar-problem. arXiv:1704.02779v2 (2017)
  83. 83.
    Yuan, F., Qiu, D.Q., Liu, W., Porsezian, K., He, J.S.: On the evolution of a rogue wave along the orthogonal direction of the (t, x)-plane. Commun. Nonlinear Sci. Numer. Simul. 44, 245–257 (2017)MathSciNetCrossRefGoogle Scholar
  84. 84.
    Qiu, D.Q., Zhang, Y.S., He, J.S.: The rogue wave solutions of a new (2+1)-dimensional equation. Commun. Nonlinear Sci. Numer. Simul. 30, 307–315 (2016)MathSciNetCrossRefGoogle Scholar
  85. 85.
    Zhang, Y.S., Guo, L.J., Chabchoub, A., He, J.S.: Higher-order rogue wave dynamics for a derivative nonlinear Schrödinger equation. Rom. J. Phys. 62, 102 (2017)Google Scholar
  86. 86.
    He, J.S., Wang, L.H., Li, L.J., Porsezian, K., Erdlyi, R.: Few-cycle optical rogue waves: complex modified Korteweg–de Vries equation. Phys. Rev. E 89, 062917 (2014)CrossRefGoogle Scholar
  87. 87.
    Hirota, R.: The direct method in soliton theory. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  88. 88.
    Rao, J.G., Porsezian, K., He, J.S.: Semi-rational solutions of the third-type Davey–Stewartson equation. Chaos 27, 083115 (2017)MathSciNetCrossRefGoogle Scholar
  89. 89.
    Rao, J.G., Cheng, Y., He, J.S.: Rational and semi-rational solutions of the nonlocal Davey–Stewartson equations. Stud. Appl. Math. 139, 568–598 (2017)MathSciNetCrossRefMATHGoogle Scholar
  90. 90.
    Ablowitz, M.J., Satsuma, J.: Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys. 19, 2180–2186 (1978)MathSciNetCrossRefMATHGoogle Scholar
  91. 91.
    Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsNingbo UniversityZhejiangPeople’s Republic of China
  2. 2.Horia Hulubei National Institute for Physics and Nuclear EngineeringMagureleRomania

Personalised recommendations