Skip to main content
Log in

Non-smooth predictive control for mechanical transmission systems with backlash-like hysteresis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a non-smooth predictive control approach for mechanical transmission systems described by dynamic models with preceded backlash-like hysteresis. In this type of system, the work platform is driven by a DC motor through a gearbox. The work platform is represented by a linear dynamic sub-model connected in series with a backlash-like hysteresis inherent in gearbox. Here, backlash-like hysteresis is modeled as a non-smooth function with multi-valued mapping. In this case, the conventional model predictive control for such system cannot be implemented directly since the gradients of the control objective function with respect to control variables do not exist at non-smooth points. In order to solve this problem, a non-smooth receding horizon strategy is proposed. Moreover, the stability of predictive control of such non-smooth dynamic systems is analyzed. Finally, a numerical example and a simulation study on a mechanical transmission system are presented for validating the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nordin, M., Gutman, P.: Controlling mechanical systems with backlash-like hysteresis—a survey. Automatica 38, 1633–1649 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tao, C.W.: Fuzzy control for linear plants with uncertain output backlash-like hysteresis, IEEE Trans. Syst. Man Cybern. Part B: Cybern. 32(3), 373–380 (2002)

    Article  Google Scholar 

  3. Zhou, J., Zhang, C., Wen, C.: Robust adaptive output control of uncertain nonlinear plants with unknown backlash-like hysteresis nonlinearity. IEEE Trans. Autom. Control 52(3), 503–509 (2007)

    Article  MathSciNet  Google Scholar 

  4. Baruch, I.S., Beltran, R.L., Nenkova, B.: A mechanical system backlash-like hysteresis compensation by means of a recurrent neural multi-model. In: 2nd IEEE International Conference on Intelligent Systems, pp. 514–519 (2004)

  5. Dong, R., Tan, Y.: Internal model control for dynamic systems with preceded backlash-like hysteresis. J. Dyn. Syst. Measure. Control 131, 024504 (2009)

    Article  Google Scholar 

  6. Zhao, Y., Liu, G., Rees, D.: Networked predictive control systems based on the Hammerstein model. IEEE Trans. Circuits Syst. II: Express 55(5), 469–473 (2008)

    Article  Google Scholar 

  7. Zhao, Y., Liu, G., Rees, D.: A predictive control-based approach to networked Hammerstein systems: design and stability analysis. IEEE Trans. Syst. Man. Cybern. Part B: Cybern. 38(3), 700–708 (2008)

    Article  Google Scholar 

  8. Ding, B., Huang, B.: Output feedback model predictive control for nonlinear systems represented by Hammerstein-Wiener model. IET Control Theory Appl. 1(5), 1302–1310 (2007)

    Article  MathSciNet  Google Scholar 

  9. Oblak, S., Škrjanc, I.: Continuous-time Wiener-model predictive control of a pH process. In: Proceedings of the ITI 2007 29th International Conference on Information Technology Interfaces, Cavtat, pp. 771-776 (2007)

  10. Harnischmacher, G., Marquardt, W.: Nonlinear model predictive control of multivariable processes using block-structured models. Control Eng. Pract. 15(10), 1238–1256 (2007)

    Article  Google Scholar 

  11. Zabiri, H., Samyudia, Y.: A hybrid formulation and design of model predictive control for systems under actuator saturation and backlash-like hysteresis. J. Process Control 16, 693–709 (2006)

    Article  Google Scholar 

  12. Lagerberg, A., Egardt, B.: Model predictive control of automotive powertrains with backlash-like hysteresis. In: Proceedings of 16th IFAC World Congress, Prague, 1887 (2005)

  13. Rostalski, P., Besselmann, T., Baric, M., Van Belzen, F., Morari, M.: A hybrid approach to modeling, control and state estimation of mechanical systems with backlash-like hysteresis. Int. J. Control 80(11), 1729–1740 (2007)

    Article  MATH  Google Scholar 

  14. Mäkelä, M.M., Miettinen, M., Lukšan, L., Vlcek, J.: Comparing nonsmooth nonconvex bundle methods in solving hemivariational inequalities. J. Global Optim. 14, 117–135 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Miller, S.A.: An Inexact Bundle Method for Solving Large Structured Linear Matrix Inequality, Doctor of Philosophy in Electrical and Computer Engineering. University of California, Santa Barbara (2001)

    Google Scholar 

  16. Cambini, A., Martein, L.: Generalized Convexity and Optimization Theory and Applications. Lecture Notes in Economics and Mathematical Systems, vol. 616. Springer-Verlag, Berlin, Heidelberg (2009)

  17. Mäkelä, M.M.: Survey of bundle methods for nonsmooth optimization. Optim. Methods Softw. 17(1), 1–29 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dong, R., Tan, Y., Chen, H.: Recursive identification for dynamic systems with backlash-like hysteresis. Asian J. Control 12(1), 26–38 (2010)

    MathSciNet  Google Scholar 

  19. Clarke, D., Mohtadi, C., Tuffs, P.: Generalized predictive control-Part I. The basic algorithm. Automatica 23(2), 137–148 (1987)

    Article  MATH  Google Scholar 

  20. Xu, L., Feng, C.: Reviews of generalized predictive control. Control Des. 7(4), 241–246 (1992)

    Google Scholar 

  21. Clarke, D.W., Mohtadi, C., Tuffs, P.S.: Generalized predictive control part II. Extensions and interpretations. Automatica 23(2), 149–160 (1987)

    Article  MATH  Google Scholar 

  22. Dong, R., Tan, Y., Janschek, K.: Non-smooth predictive control for Wiener systems with backlash-like hysteresis. IEEE/ASME Trans. Mech. 21(1), 17–28 (2016)

    Google Scholar 

Download references

Acknowledgments

This research is partially supported by the Research Projects of Science and Technology Commission of Shanghai (Grant Nos. 14140711200 and 14ZR1430300), the Advanced Research Project of Shanghai Normal University (Grant No. DYL201604) and the National Science Foundation of China (NSFC Grant Nos.: 61571302, 61371145,61203108 and 61171088). The first author would also like to give her acknowledgment to the support of K.C. Wong Education Foundation (KCWEF) and German Academic Exchange Service (DAAD) as well as Dresden Fellowship Program of TUD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong Tan.

Appendices

Appendix 1

In the following, the proof of Theorem 3 will be presented.

For the convenience of analysis, it is supposed that

$$\begin{aligned} \mathbf{U}_1 (k)=\mathbf{U}(k)-\mathbf{D}(k). \end{aligned}$$
(43)

Based on formulae (1), (2), (12) and (22), \(\mathbf{U}_1 (k)\) can be represented by

$$\begin{aligned} \mathbf{U}_1 (k)= & {} \left[ {{\varvec{\Lambda }}+\left( \tilde{\mathbf{h}}(k) \right) ^{T}{} \mathbf{F}_0 ^{T}{} \mathbf{QF}_0 \mathbf{h}(k)} \right] ^{-1} \nonumber \\&\Bigg \{{\varvec{\Lambda }} \mathbf{U}_1 (k-1)+\left( \tilde{\mathbf{h}}(k) \right) ^{T}{} \mathbf{F}_0 ^{T}{} \mathbf{Q}\nonumber \\&\times \Bigg [ {\mathbf{R}}(k+1)\mathbf{-G}y(k)+\mathbf{F}_\mathbf{0} \tilde{{\varvec{\upvarphi }}}(k)\mathbf{X}(k-1)\nonumber \\&-\mathbf{F}_\mathbf{1} \Delta \mathbf{X}(k-1)\Bigg ] \Bigg \}. \end{aligned}$$
(44)

It is known that, in receding horizon control strategy, only the first element of control vector, i.e., u(k) is implemented to the controlled system, the other control sequence, i.e., \(u(k+1),\ldots ,\) and \(u(k+N_u -1)\) are not implemented. Therefore, from (44), it is obtained that

$$\begin{aligned} u_1 (k)= & {} [1{\hbox { 0 }}\ldots \mathrm{0}]\mathbf{U}_1\nonumber \\= & {} \mathbf{d}_{\mathbf{11}} u_1 (k-1)+\mathbf{d}_{21} \left[ \mathbf{R}(k+1)\mathbf{-G}y(k)\right. \nonumber \\&\left. +\,\mathbf{F}_\mathbf{0} \tilde{{\varvec{\upvarphi }}}(k)\mathbf{X}(k-1)-\mathbf{F}_\mathbf{1} \Delta \mathbf{X}(k-1) \right] . \end{aligned}$$
(45)

Based on the definition of \(\mathbf{F}_0 ,\mathbf{X}(k),{\tilde{{\varvec{\upvarphi }}}}(k),\mathbf{F}_\mathbf{1}\) and \(\Delta \mathbf{X}(k-1)\), it leads to:

$$\begin{aligned}&{} \mathbf{F}_0 {\tilde{\varvec{\upvarphi }}}(k)\mathbf{X}(k-1)\nonumber \\&\quad =\left[ {{\begin{array}{cccccc} {s_{d,0} }&{} 0&{} \ldots &{} &{} 0 \\ {s_{d+1,1} }&{} {s_{d,0} }&{} \ldots &{} &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} &{} \vdots \\ {s_{L,L-d+2} }&{} {s_{L-1,L-d+3} }&{} \ldots &{} &{} {s_{L-N_u +1,L-N_u -d+1} } \\ \end{array} }} \right] \nonumber \\&\quad \times \left( {{\begin{array}{l} {\left( {1-\phi (k-1)} \right) \hat{{x}}(k-1)} \\ {\left( {1-\phi (k)} \right) \hat{{x}}(k)} \\ \vdots \\ {\left( {1-\phi (k+N_u -2)} \right) \hat{{x}}(k+N_u -2)} \\ \end{array} }} \right) \nonumber \\&\quad =\left( {{\begin{array}{l} {s_{d,0} z^{-1}\left( {1-\phi (k-1)} \right) } \\ {(s_{d+1,1} z^{-1}+s_{d,0} )\left( {1-\phi (k)} \right) } \\ \vdots \\ (s_{L,L-d+2} z^{-1}+s_{L-1,L-d+3} +\ldots \\ \quad +s_{L-N_u +1,L-N_u -d+1} z^{N_u -2})\\ \quad \left( {1-\phi (k+N_u -2)} \right) \\ \end{array}}} \right) \hat{{x}}(k)\nonumber \\&\quad ={\bar{\mathbf{F}}}_0 (z^{-1})\hat{{x}}(k) \end{aligned}$$
(46)

and

$$\begin{aligned}&{} \mathbf{F}_\mathbf{1} \Delta \mathbf{X}(k-1)\nonumber \\&\quad =\left[ {{\begin{array}{cccc} {s_{d,n_b } }&{} {s_{d,n_b -1} }&{} \ldots &{} {s_{d,1} } \\ {s_{d+1,n_b +1} }&{} {s_{d+1,n_b } }&{} \ldots &{} {s_{d+1,2} } \\ \vdots &{} \vdots &{} \vdots &{} \vdots \\ {s_{L,n_b +L-d} }&{} {s_{L,n_b +L-d-1} }&{} \ldots &{} {s_{L,L-d+1} } \\ \end{array}}}\right] \nonumber \\&\qquad \times \left( {{\begin{array}{l} {\Delta \hat{{x}}(k-n_b )} \\ {\Delta \hat{{x}}(k-n_b +1)} \\ \vdots \\ {\Delta \hat{{x}}(k-1)} \\ \end{array} }} \right) \nonumber \\&=\left[ {{\begin{array}{l} -s_{d,n_b } z^{-n_b -1}+(s_{d,n_b } -s_{d,n_b -1} )z^{-n_b }+\cdots \\ \quad +(s_{d,2} -s_{d,1} )z^{-2}+s_{d,1} z^{-1} \\ -s_{d+1,n_b +1} z^{-n_b -1}+(s_{d+1,n_b +1} -s_{d+1,n_b } )z^{-n_b }\\ \quad +\cdots +(s_{d+1,3} -s_{d+1,2} )z^{-2}+s_{d+1,2} z^{-1} \\ \vdots \\ -s_{L,n_b +L-d} z^{-n_b -1}+(s_{L,n_b +L-d} -s_{L,n_b +L-d-1} )\\ \quad \times z^{-n_b }+\cdots +(s_{L,L-d} -s_{L,L-d+1} )z^{-2}\\ \quad +s_{L,L-d+1} z^{-1} \\ \end{array} }} \right] \hat{{x}}(k) \nonumber \\&\quad ={\bar{\mathbf{F}}}_1 (z^{-1})\hat{{x}}(k). \end{aligned}$$
(47)

By substituting (46) and (47) into (45), it yields

$$\begin{aligned}&u_1 (k)=\mathbf{d}_{\mathbf{11}} u_1 (k-1)\nonumber \\&\quad +\mathbf{d}_{21} \left[ {\mathbf{R}(k+1)\mathbf{-G}y(k)+({\bar{\mathbf{F}}}_0 (z^{-1})-{\bar{\mathbf{F}}}_1 (z^{-1}))\hat{{x}}(k)} \right] .\nonumber \\ \end{aligned}$$
(48)

It is known that

$$\begin{aligned} y(k)=y_{m} (k)+e(k). \end{aligned}$$
(49)

where \(y_{m} (k)\) is the output of system model, e(k) is the model error which is defined as \(e(k)=y(k)-y_{m} (k)\).

For \(\hat{{M}}_1 (z^{-1})\) is the model of linear sub-system, it leads to:

$$\begin{aligned} y_m (k)=\hat{{M}}_1 (z^{-1})\hat{{x}}(k). \end{aligned}$$
(50)

Then, substituting Eqs. (50) into (49) results in

$$\begin{aligned} y(k)=\hat{{M}}_1 (z^{-1})\hat{{x}}(k)+e(k). \end{aligned}$$
(51)

Afterward, substituting Eqs. (51) into (48) yields

$$\begin{aligned} u_1 (k)= & {} \mathbf{d}_{\mathbf{11}} u_1 (k-1)+\mathbf{d}_{21}\nonumber \\&\times \left[ \mathbf{R}(k+1)\mathbf{-G}\hat{{M}}_1 (z^{-1})\hat{{x}}(k)-\mathbf{G}e(k)\right. \nonumber \\&+\, \left. ({\bar{\mathbf{F}}}_0 (z^{-1})-{\bar{\mathbf{F}}}_1 (z^{-1}))\hat{{x}}(k) \right] . \end{aligned}$$
(52)

In the following, the proof will be implemented based on two cases, i.e.,

Case 1 if the system operates in linear zones, based on Eqs. (2), (25) and (43), Eq. (52) can be written as:

$$\begin{aligned}&u_1 (k)=\mathbf{d}_{\mathbf{11}} z^{-1}u_1 (k)\!+\!\mathbf{d}_{21} \left[ \mathbf{R}(k+1)\mathbf{-G}\hat{{M}}_1 (z^{-1})\right] \nonumber \\&\quad \left[ {\hat{{m}}_1 +(\hat{{m}}_2 -\hat{{m}}_1 )\tilde{w}(k)} \right] u_1 (k)\nonumber \\&\quad -\,\mathbf{G}e(k)+({\bar{\mathbf{F}}}_0 (z^{-1})-{\bar{\mathbf{F}}}_1 (z^{-1})\left[ \hat{{m}}_1\right. \nonumber \\&\quad \left. +\,(\hat{{m}}_2 -\hat{{m}}_1 )\tilde{w}(k) \right] u_1 (k)], \end{aligned}$$
(53)

namely,

$$\begin{aligned} u_1 (k)\!=\!\frac{1}{F(z^{-1})}[D_r (z^{-1})r(k\!+\!L)\!-\!M_2 (z^{-1})e(k)],\nonumber \\ \end{aligned}$$
(54)

where

$$\begin{aligned} F(z^{-1})= & {} \mathbf{d}_{21} \mathbf{G}\hat{{M}}_1 (z^{-1})\left[ {\hat{{m}}_1 +(\hat{{m}}_2 -\hat{{m}}_1 )\tilde{w}(k)} \right] \\&+\mathbf{d}_{21}({\bar{\mathbf{F}}}_1 (z^{-1})-{\bar{\mathbf{F}}}_0 (z^{-1}))\\&\times \left[ {\hat{{m}}_1 +(\hat{{m}}_2 -\hat{{m}}_1 )\tilde{w}(k)} \right] -\mathbf{d}_{\mathbf{11}} z^{-1}+1 \\= & {} \mathbf{d}_{21} \mathbf{G}G_m (z^{-1})+\mathbf{d}_{21} ({\bar{\mathbf{F}}}_1\\&(z^{-1})-{\bar{\mathbf{F}}}_0 (z^{-1}))\left[ {\hat{{m}}_1 +(\hat{{m}}_2 -\hat{{m}}_1 )\tilde{w}(k)} \right] \\&-\mathbf{d}_{\mathbf{11}} z^{-1}+1 , \end{aligned}$$

\(M_2 (z^{-1})=\mathbf{d}_{21} \mathbf{G}\) and \(D_{r} (z^{-1})y_{r} (k+L)=\mathbf{d}_{21} \mathbf{R}(k+1)\). Based on (43), it leads to

$$\begin{aligned} u(k)=u_{1} (k)+D(k). \end{aligned}$$
(55)

By considering Remark 1, (24)–(28) and (49)–(51), (54) can be written as:

$$\begin{aligned} u_1 (k)= & {} \frac{1}{F(z^{-1})-M_2 (z^{-1})G_m (z^{-1})}\nonumber \\&[D_r (z^{-1})r(k+L)-M_2 (z^{-1})y(k)]. \end{aligned}$$
(56)

Then, based on (24)–(29), (49)–(51) and (54), it leads to

$$\begin{aligned} y(k)= & {} \frac{G_{s} (z^{-1})D_{r} (z^{-1})r(k+L)}{F(z^{-1})+M_2 (z^{-1})\Delta \tilde{G}(z^{-1})}\nonumber \\= & {} \frac{G_{s} (z^{-1})G_{c} (z^{-1})D_{r} (z^{-1})r(k+L)}{1+G_{c} (z^{-1})M_2 (z^{-1})\Delta \tilde{G}(z^{-1})}. \end{aligned}$$
(57)

In terms of the small gain Theorem, note that the relation between (29) and (30). Then, it is known that the control system is stable if \(G_{c} (z^{-1})\) and \(P(z^{-1})\) are selected to satisfy

$$\begin{aligned}&\mathrm{sup}|G_c (z^{-1})||M_2 (z^{-1})||\eta (z^{-1})|\nonumber \\&\quad =\frac{{\hbox {sup}}|M_2 (z^{-1})||\eta (z^{-1})|}{\mathrm{inf}|P(z^{-1})|}<1,\hbox { and namely },\nonumber \\&\quad \times \mathrm{sup}|M_2 (z^{-1})||\eta (z^{-1})|<\mathrm{inf}|P(z^{-1})| \end{aligned}$$
(58)

Case 2 The control system works in memory zones.

In this case, it is known that:

$$\begin{aligned} u(k)=u(k-1). \end{aligned}$$
(59)

If (58) is satisfied to enable the control system to be stable in Case 1, the control system is also stable when the system works in memory zones.

Thus, the corresponding closed-loop control system can be stabilized if \(\mathrm{sup}|M_2 (z^{-1})||\eta (z^{-1})|<\mathrm{inf}|P(z^{-1})|\).

End of proof. \(\square \)

Appendix 2

  1. Step 1:

    Given \(\varepsilon >0\);

  2. Step 2:

    Calculate the Clarke sub-gradient of x(k) with respect to u(k), i.e., estimate \(\tilde{h}_1 (k)\) in (22);

  3. Step 3:

    Calculate the Clarke sub-gradient of J(k) with respect to u(k), i.e., \(\partial J_{k}^{j_2 } (u(k))\) where \(j_2 =1,2,\cdots ,t\), and t is a bounded natural number;

  4. Step 4:

    Calculate \(u_{j_2 } (k)\) based on Eq.(23);

  5. Step 5:

    If \(J(k)\le t_1 \varepsilon ,t_1 \in (0,1)\), and \(u(k)=u_{j_2 } (k)\), it goes to step 7; otherwise, go to step 6;

  6. Step 6:

    Let \(u(k)=u_{j_3} (k)\), where \(u_{j_3}(k)\) enables J(k) to reach its minima;

  7. Step 7:

    Let \(k=k\) +1, and go to step 2.

Appendix 3

In this appendix, the procedure to deduce (22) is shown as follows.

Substituting (15) into (12) leads to:

$$\begin{aligned} J(k)= & {} \frac{1}{2}[\mathbf{R}(k+1)-\mathbf{G}y(k)-\mathbf{F}_\mathbf{0} \mathbf{h}(k)\mathbf{U}(k)\nonumber \\&+\mathbf{F}_\mathbf{0} \mathbf{h}(k)\mathbf{D}(k) +\mathbf{F}_\mathbf{0}{\tilde{\varvec{\upvarphi }}}(k)\mathbf{X}(k-1) \nonumber \\&-\,\mathbf{F}_1 \Delta \mathbf{X}(k-1)]^{\mathbf{T}}{} \mathbf{Q}[\mathbf{R}(k+1)- \nonumber \\&\mathbf{G}y(k)-\mathbf{F}_\mathbf{0} \mathbf{h}(k)\mathbf{U}(k)+\mathbf{F}_\mathbf{0} \mathbf{h}(k)\mathbf{D}(k)\nonumber \\&+\mathbf{F}_\mathbf{0} {\tilde{\varvec{\upvarphi }}}(k)\mathbf{X}(k-1)-\,\mathbf{F}_1 \Delta \mathbf{X}(k-1)]\nonumber \\&+\Delta \mathbf{U}(k)^{\mathbf{T}} {\varvec{\Lambda }} \Delta \mathbf{U}(k) \end{aligned}$$
(60)

Thus, the corresponding Clarke sub-differential of J(k) with respect to u(k) can be obtained by:

$$\begin{aligned}&\partial _{u(k)} J(k) \nonumber \\&\quad =-\left( {{\tilde{\mathbf{h}}}(k)} \right) ^{T}{} \mathbf{F}_0 ^{T}{} \mathbf{Q}\big [ \mathbf{R}(k+1)\nonumber \\&\qquad -\mathbf{G}y(k)-\mathbf{F}_\mathbf{0} \mathbf{h}(k)\mathbf{U}(k)+\,\mathbf{F}_\mathbf{0} \mathbf{h}(k)\mathbf{D}(k)\nonumber \\&\qquad +\,\mathbf{F}_\mathbf{0} {\tilde{\varvec{\upvarphi }}}(k)\mathbf{X}(k-1)-\mathbf{F}_1 \Delta \mathbf{X}(k-1) \big ]+\,{\varvec{\Lambda }} \Delta \mathbf{U} .\nonumber \\ \end{aligned}$$
(61)

Based on Theorem 1 and (61), it leads to:

$$\begin{aligned}&-\left( {{\tilde{\mathbf{h}}}(k)} \right) ^{T}{} \mathbf{F}_0 ^{T}{} \mathbf{Q}\big [ \mathbf{R}(k+1)-\mathbf{G}y(k)\nonumber \\&\quad -\mathbf{F}_\mathbf{0} \mathbf{h}(k)\mathbf{U}(k)+\,\mathbf{F}_\mathbf{0} \mathbf{h}(k)\mathbf{D}(k)\nonumber \\&\quad +\,\mathbf{F}_\mathbf{0} {\tilde{\varvec{\upvarphi }}} (k)\mathbf{X}(k-1)-\mathbf{F}_1 \Delta \mathbf{X}(k-1) \big ]\nonumber \\&\quad +{\varvec{\Lambda }} \Delta \mathbf{U}=0. \end{aligned}$$
(62)

Namely, (22) is obtained

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, R., Tan, Y., Janschek, K. et al. Non-smooth predictive control for mechanical transmission systems with backlash-like hysteresis. Nonlinear Dyn 85, 2277–2295 (2016). https://doi.org/10.1007/s11071-016-2828-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2828-8

Keywords

Navigation