Nonlinear Dynamics

, Volume 84, Issue 4, pp 2057–2068 | Cite as

Time-domain simulation of MIMO fractional systems



The paper proposes an original method for time-domain simulation of MIMO fractional systems based on their rational approximation using Oustaloup’s method. Both commensurate and incommensurate fractional systems are tackled. The main contribution is to propose straightforward formulae allowing to approximate a pseudo-state-space representation of a fractional system with a state-space representation of a rational one whatever the dimension of the original system and whatever the number of poles and zeros used in the approximation.


Fractional systems Simulation Oustaloup’s approximation MIMO 


  1. 1.
    Sabatier, J., Aoun, M., Oustaloup, A., Grégoire, G., Ragot, F., Roy, P.: Fractional system identification for lead acid battery sate charge estimation. Signal Process. 86(10), 2645–2657 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Oldham, K.B., Spanier, J.: Diffusive transport to planar, cylindrical and spherical electrodes. Electroanal. Chem. Interfacial Electrochem. 41, 351–358 (1973)CrossRefGoogle Scholar
  3. 3.
    Battaglia, J., Le Lay, L., Batsale, J., Oustaloup, A., Cois, O.: Heat flux estimation through inverted non integer identification models. Int. J. Therm. Sci. 39(3), 374–389 (2000)CrossRefGoogle Scholar
  4. 4.
    Moreau, X., Ramus-Serment, C., Oustaloup, A.: Fractional differentiation in passive vibration control. J. Nonlinear Dyn. 29, 343–362 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Xu, B., Chen, D., Zhang, H., Wang, F.: Modeling and stability analysis of a fractional-order francis hydro-turbine governing system. Chaos Solitons Fract. 75, 50–61 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Aoun, M., Malti, R., Levron, F., Oustaloup, A.: Numerical simulations of fractional systems: an overview of existing methods and improvements. Nonlinear Dyn. 38(1–4), 117–131 (2004)CrossRefMATHGoogle Scholar
  7. 7.
    Podlubny, I.: Fractional-order systems and pi-lambda d-mu-controllers. IEEE Trans. Autom. Control 44, 208–214 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Orsingher, E., Beghin, L.: Time-fractional telegraph equations and telegraph processes with brownian time. Probab. Theory Relat. Fields 128, 141–160 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Oustaloup, A.: La dérivation non-entière: théorie, synthèse et applications. Hermès, Paris (1995)Google Scholar
  10. 10.
    Huang, F., Liu, F.: The time fractional diffusion equation and the advection-dispersion equation. J Aust. Math. Soc. 46, 317–330 (2005)Google Scholar
  11. 11.
    Schneider, W., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9, 23–28 (1996)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chen, J., Liu, F., Anh, V.: Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338, 1364–1377 (2008)Google Scholar
  14. 14.
    Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)MathSciNetMATHGoogle Scholar
  15. 15.
    Aoun, M., Amairi, M., M.N., A.: Simulation method of fractional systems based on the discrete-time approximation of the Caputo fractional derivatives. In: 8th International Multi-Conference on Systems, Signals and Devices. Gabes, Tunisia (2011)Google Scholar
  16. 16.
    Hwang, C., Leu, J., Tsay, S.: A note on time-domain simulation of feedback fractional-order systems. IEEE Trans. Autom. Control 47(4), 625–631 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rapaic, M., Pisano, A., Jelicic, Z.: Trapezoidal rule for numerical evaluation of fractional order integrals with applications to simulation and identification of fractional order systems. In: IEEE International Conference on Control Applications. Dubrovnik, Croatia (2012)Google Scholar
  18. 18.
    Al-Alaoui, M.: Novel IIR differentiator from the Simpson integration rule. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 41(2), 186–187 (1994)CrossRefMATHGoogle Scholar
  19. 19.
    Tabak, D.: Digitalization of control systems. Comput. Aided Des. 3, 13–18 (1971)CrossRefGoogle Scholar
  20. 20.
    Trigeassou, J.C., Poinot, T., Lin, J., Oustaloup, A., Levron, F.: Modeling and identification of a non integer order system. In: ECC. Karlsruhe, Germany (1999)Google Scholar
  21. 21.
    Poinot, T., Trigeassou, J.C.: A method for modelling and simulation of fractional systems. Signal Process. 83, 2319–2333 (2003)CrossRefMATHGoogle Scholar
  22. 22.
    Krajewski, W., Viaro, U.: A method for the integer-order approximation of fractional-order systems. J. Franklin Inst. 351(1), 555–564 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Tavazoei, M., Haeri, M.: Rational approximations in the simulation and implementation of fractional-order dynamics: A descriptor system approach. Automatica 46(1), 94–100 (2010). doi: 10.1016/j.automatica.2009.09.016 MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Mansouri, R., Bettayeb, M., Djennoune, S.: Multivariable fractional system approximation with initial conditions using integral state-space representation. Comput. Math. Appl. 59, 1842–1851 (2010)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Mansouri, R., Bettayeb, M., Djennoune, S.: Comparison between two approximation methods of state-space fractional systems. Signal Process. 91, 461–469 (2011)CrossRefMATHGoogle Scholar
  26. 26.
    Bouafoura, M., Moussi, O., Braiek, N.: A fractional state-space realization method with block pulse basis. Signal Process. 91, 492–497 (2011)CrossRefMATHGoogle Scholar
  27. 27.
    Khanra, M., Pal, J., Biswas, K.: Reduced order approximation of MIMO fractional order systems. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 451–458 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATHGoogle Scholar
  29. 29.
    Matignon, D., d’Andréa Novel, B.: Some results on controllability and observability of finite-dimensional fractional differential systems. In: IEEE-CESA’96, SMC IMACS ulticonference. Lille, France, pp. 952–956 (1996)Google Scholar
  30. 30.
    Matignon, D.: Stability properties for generalized fractional differential systems. In: ESAIM : Proceedings, Fractional Differential Systems: Models, Methods and Applications, vol. 5, pp. 145–158 (1998)Google Scholar
  31. 31.
    Oustaloup, A.: Systèmes asservis linéaires d’ordre fractionnaire. Masson, Paris (1983)Google Scholar
  32. 32.
    Malti, R., Thomassin, M.: Differentiation similarities in fractional pseudo-state-space representations and the subspace-based methods. Fract. Calc. Appl. Anal. 16, 273–287 (2013)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Maillet, D., André, S., Batsale, J.C., Degiovanni, A., Moyne, C.: Solving the Heat Equation Through Integral Transforms. Wiley, New York (2000)MATHGoogle Scholar
  34. 34.
    Victor, S., Melchior, P., Oustaloup, A.: Robust path tracking using flatness for fractional linear mimo systems: a thermal application. Comput. Math. Appl. 59, 1667–1678 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.IMS UMR 5218 CNRSUniversity of BordeauxTalenceFrance

Personalised recommendations