Skip to main content
Log in

Nonlinear augmented observer design and application to quadrotor aircraft

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a nonlinear augmented observer, and it is applied to an underactuated quadrotor aircraft. Not only the proposed augmented observer can estimate the velocity from the position measurement, but also the uncertainties can be obtained. The robustness in time domain and in frequency domain is analyzed, respectively. The merits of the presented augmented observer include its synchronous estimation of velocity and uncertainties, finite-time stability, ease of parameters selection, and sufficient stochastic noise rejection. Moreover, a simple control law based on the augmented observer is designed to stabilize the flight dynamics. Simulation results illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altug, E., Ostrowski, J.P., Mahony, R.: Control of a quadrotor helicopter using visual feedback. In: IEEE International Conference on Robotics & Automation, ICRA’02, Washington, DC, 11–15 May, pp. 72–77 (2002)

  2. Lee, D., Lim, H., Kim, H.J., Kim, Y., Seong, K.J.: Adaptive image-based visual servoing for an underactuated quadrotor system. J. Guid. Control Dyn. 35(4), 1335–1353 (2012)

    Article  Google Scholar 

  3. Ryan, T., Kim, H.J.: LMI-based gain synthesis for simple robust quadrotor Control. IEEE Trans. Autom. Sci. Eng. 10(4), 1173–1178 (2013)

    Article  Google Scholar 

  4. Besnard, H., Shtessel, Y.B., Landrum, B.: Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer. J. Frankl. Inst. 349(2), 658–684 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lee, D.J., Franchi, A., Son, H.I., Ha, C., Bulthoff, H.H., Giordano, P.R.: Semiautonomous haptic teleoperation control architecture of multiple unmanned aerial vehicles. IEEE/ASME Trans. Mechatron. 18(4), 1334–1345 (2013)

    Article  Google Scholar 

  6. Kendoul, F., Lara, D., Fantoni-Coichot, I., Lozano, R.: Real-time nonlinear embedded control for an autonomous quadrotor helicopter. J. Guid. Control Dyn. 30(4), 1049–1061 (2007)

    Article  Google Scholar 

  7. Salazar-Cruz, S., Escareno, J., Lara, D., Lozano, R.: Embedded control system for a four-rotor UAV. Int. J. Adapt. Control Signal Process. 21(2–3), 189–204 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hoffmann, G., Huang, H., Waslander, S., Tomlin, C.: Quadrotor helicopter flight dynamics and control: theory and experiment. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Hiltion Head, South Carolina, 20–23 August, pp. 1670–1689 (2007)

  9. Grzonka, S., Grisetti, G., Burgard, W.: Towards a navigation system for autonomous indoor flying. In: IEEE International Conference on Robotics and Automation, Kobe, 12–17 May, pp. 2878–2883 (2009)

  10. Hamela, T., Mahony, R.: Image based visual servo control for a class of aerial robotic system. Automatica 43(11), 1976–1983 (2007)

    Google Scholar 

  11. Guenard, N., Hamel, T., Mahony, R.: A practical visual servo control for an unmanned aerial vehicle. IEEE Trans. Robot. 24(2), 331–340 (2008)

    Article  Google Scholar 

  12. Kendoul, F., Fantoni, I., Nonami, K.: Optic flow-based vision system for autonomous 3d localization and control of small aerial vehicles. Robot. Auton. Syst. 57(6–7), 591–602 (2009)

    Article  Google Scholar 

  13. Valenti, M., Bethke, B., Fiore, G., How, J.P., Feron, E.: Indoor Multi-vehicle flight testbed for fault detection, isolation, and recovery. In: AIAA Guidance, Navigation, and Control Conference (GNC), Keystone, CO, (AIAA-2006-6200), pp. 1–18 (2006)

  14. How, J.P., McGrew, J., Frank, A., Hines, G.: Autonomous aircraft flight control for constrained environments. In: IEEE International Conference on Robotics and Automation, ICRA 2008, Pasadena, CA, 19–23 May, pp. 2213–2214 (2008)

  15. Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N.: Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. In: Proceedings of the SPIE, April, vol. 7332, pp. 733219-1–733219-10 (2009)

  16. Chamseddine, A., Zhang, Y., Rabbath, C.A., Join, C., Theilliol, D.: Flatness-based trajectory planning/replanning for a quadrotor unmanned aerial vehicle. IEEE Trans. Aerosp. Electron. Syst. 48(4), 2832–2848 (2012)

    Article  Google Scholar 

  17. Carrillo, L.R., Dzul, A., Lozano, R.: Hovering quad-rotor control: a comparison of nonlinear controllers using visual feedback. IEEE Trans. Aerosp. Electron. Syst. 48(4), 3159–3170 (2012)

    Article  Google Scholar 

  18. Atassi, A.N., Khalil, H.K.: Separation results for the stabilization of nonlinear systems using different high-gain observer designs. Syst. Control Lett. 39(3), 183–191 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Levant, A.: High-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang, X., Chen, Z., Yang, G.: Finite-time-convergent differentiator based on singular perturbation technique. IEEE Trans. Autom. Control 52(9), 1731–1737 (2007)

    Article  MathSciNet  Google Scholar 

  21. Wang, X., Shirinzadeh, B.: Rapid-convergent nonlinear differentiator. Mech. Syst. Signal Process. 28(4), 414–431 (2012)

    Article  Google Scholar 

  22. Wang, X., Shirinzadeh, B.: Nonlinear continuous integral-derivative observer. Nonlinear Dyn. 77(3), 793–806 (2014)

    Article  MathSciNet  Google Scholar 

  23. Luque-Vega, L., Castillo-Toledo, B., Loukianov, A.G.: Robust block second order sliding mode control for a quadrotor. J. Frankl. Inst. 349(2), 719–739 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Patel, A.R., Patel, M.A., Vyas, D.R.: Modeling and analysis of quadrotor using sliding mode control. In: 2012 44th Southeastern Symposium on System Theory (SSST), Jacksonville, FL, 11–13 March, pp. 111–114 (2012)

  25. Hwang, C.L.: Hybrid neural network under-actuated sliding-mode control for trajectory tracking of quad-rotor unmanned aerial vehicle. In: The 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, QLD, 10–15 June, pp. 1–8 (2012)

  26. Yeh, F.K.: Attitude controller design of mini-unmanned aerial vehicles using fuzzy sliding-mode control degraded by white noise interference. IET Control Theory Appl. 6(9), 1205–1212 (2012)

    Article  MathSciNet  Google Scholar 

  27. Wang, L.X.: Fuzzy systems are universal approximations. In: Proceedings of the IEEE International Conference on Fuzzy Systems, San Diego, 8–12 March, pp. 1163–1170 (1992)

  28. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3, 246–257 (1991)

    Article  Google Scholar 

  29. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Haimo, V.T.: Finite time controllers. SIAM J. Control Optim. 24(4), 760–771 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  31. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17(2), 101–127 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47(8), 1706–1712 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73(1–2), 229–244 (2013)

    Article  MATH  Google Scholar 

  34. Hu, Q., Li, B., Zhang, A.: Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment. Nonlinear Dyn. 73(1–2), 53–71 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. Aghababa, M.P., Aghababa, H.P.: Chaos suppression of rotational machine systems via finite-time control method. Nonlinear Dyn. 69(4), 1881–1888 (2012)

  36. Guo, Z., Huang, L.: Global exponential convergence and global convergence in finite time of non-autonomous discontinuous neural networks. Nonlinear Dyn. 58(1–2), 349–359 (2009)

  37. Kahlil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  38. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  39. Munkres, J.R.: Topology a First Course. Prentice-Hall, Englewood Cliffs (1975)

    MATH  Google Scholar 

Download references

Acknowledgments

This research is supported in part by Australian Research Council (ARC) Discovery (Grant Nos. DP 0986814, DP 110104970), ARC linkage infrastructure, Equipment and Facilities (Grant Nos. LE 0347024, LE 0668508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Wang.

Appendix

Appendix

Before giving the proof of Theorem 3, we present a Lemma on finite-time stability of a high-order continuous nonlinear system.

Lemma 1

Let \(k_{1},\ldots , k_{n}>0\) be such that \( s^{n}+k_{n}s^{n-1}+\cdots +k_{2}s+k_{1}\) is Hurwitz, and consider the system

$$\begin{aligned} \dot{x}_{i}&= x_{i+1}-k_{n-i+1}\left| x_{1}\right| ^{\alpha _{n-i+1}}\mathrm{sign}(x_{1});\quad i=1,\ldots , n-1\nonumber \\ \dot{x}_{n}&= -k_{1}\left| x_{1}\right| ^{\alpha _{1}}\mathrm{sign}(x_{1}) \end{aligned}$$
(44)

there exists \(\xi \in (0,1)\) such that for every \(\alpha \in (1-\xi ,1)\), the origin is globally finite-time-stable equilibrium for Eq. (44) where \(\alpha _{1},\ldots , \alpha _{n}\) satisfy

$$\begin{aligned} \alpha _{n-i+1}=\frac{i\alpha +n-i}{n},\quad i=1,\ldots , n \end{aligned}$$
(45)

Proof of Lemma 1

From Definition 2 and Eq. (44), let

$$\begin{aligned}&\rho ^{r_{i+1}}x_{i+1}-k_{n-i+1}\left| \rho ^{r_{1}}x_{1}\right| ^{\alpha _{n-i+1}}\mathrm{sign}(x_{1})\nonumber \\&\quad =\rho ^{r_{i}+m}\left[ x_{i+1}-k_{n-i+1} \left| x_{1}\right| ^{\alpha _{n-i+1}}\mathrm{sign}(x_{1})\right] ; \nonumber \\&i =1,\ldots , n-1;\nonumber \\&-\,k_{1}\left| \rho ^{r_{1}}x_{1}\right| ^{\alpha _{1}}\mathrm{sign}(x_{i}) \!=\!\rho ^{r_{n}+m}\left[ -k_{1}\left| x_{1}\right| ^{\alpha _{1}}\mathrm{sign}(x_{1})\right] \nonumber \\ \end{aligned}$$
(46)

Therefore, from (46), we have

$$\begin{aligned} r_{i+1}&= \alpha _{n-i+1}r_{1}=r_{i}+m,\quad i=1,\ldots , n-1,\nonumber \\ \alpha _{1}r_{1}&= r_{n}+m \end{aligned}$$
(47)

Selecting \(r_{1}=1\), it follows that

$$\begin{aligned}&m =\alpha _{n}-1,\alpha _{n-i+1}=\frac{i\alpha _{1}+n-i}{n},\nonumber \\&r_{n+1-i} =\frac{(n-i)\alpha _{1}+i}{n},\quad i=1,\ldots , n \end{aligned}$$
(48)

Let \(k_{1},\ldots , k_{n}>0\) be chosen Hurwitz, and for each \(\alpha >0\), let \(f_{\alpha }\) denote the closed-loop vector field obtained in (44). For each \(\alpha >0\), the vector field \(f_{\alpha }\) is continuous. It is also easy to verify that for each \(\alpha >0\), the vector field \(f_{\alpha }\) is homogeneous of degree \(\alpha _{n}-1=\frac{\alpha _{1}-1}{n}\), where \(\alpha _{1}=\alpha \) and \(\alpha _{1},\ldots , \alpha _{n}\) satisfy (45). Moreover, the vector field \(f_{1}\) is linear with the Hurwitz characteristic polynomial \(s^{n}+k_{n}s^{n-1}+\cdots +k_{2}s+k_{1}\). Therefore, by Theorem 6.2 in [31], there exists a positive-definite, radially unbounded, Lyapunov function \(V:R^{n}\rightarrow R\) such that \(L_{f_{1}}V\) is continuous and negative definite. Let \(A=V^{-1}([0,1])\) and \(S=b\hbox {d}A=V^{-1}(\{1\})\). Then, \(A\) and \(S\) are compact since \(V\) is proper and \(0\in S\) since \(V\) is positive definite. Define \(\varphi :(0,1]\times S\, \rightarrow R\) by \(\varphi (\alpha , z)=L_{f_{\alpha }}V(z)\). Then, \(\varphi \) is continuous and satisfies \(\varphi (1,z)<0\) for all \(z\in S\), that is, \(\varphi (\{1\}\times S)\subset (-\infty , 0)\). Since \(S\) is compact, it follows from Lemma 5.8 in [39, p. 169] that there exists \(\xi >0\) such that \(\varphi ((1-\xi ,1]\times S)\subset (-\infty , 0)\). It follows that for \(\alpha \in (1-\xi , 1], \, L_{f_{\alpha }}V\) takes negative values on \(S\). Thus, \(A\) is strictly positively invariant under \(f_{\alpha }\) for every \(\alpha \in (1-\xi , 1]\). By Theorem 6.1 in [31], the origin is a globally asymptotically stable equilibrium under \(f_{\alpha }\) for every \(\alpha \in (1-\xi , 1]\). The result now follows from Theorems 7.1 and 7.3 in [31] by noting that for every \(\alpha \in (1-\xi ,1)\), the degree of homogeneity of \(f_{\alpha }\) is negative.\(\square \)

Proof of Theorem 3

The system error for Eqs. (11) and (10) is obtained as follow:

$$\begin{aligned} \dot{e}_{1}&= e_{2}-\frac{k_{3}}{\varepsilon }\left| e_{1}\right| ^{\alpha _{3}}\mathrm{sign}(e_{1})\nonumber \\ \dot{e}_{2}&= e_{3}-\frac{k_{2}}{\varepsilon ^{2}}\left| e_{1}\right| ^{\alpha _{2}}\mathrm{sign}(e_{1})\nonumber \\ \dot{e}_{3}&= -\frac{k_{1}}{\varepsilon ^{3}}\left| e_{1}\right| ^{\alpha _{1}}\mathrm{sign}(e_{1})-\eta (t) \end{aligned}$$
(49)

Thus, Eq. (49) can be rewritten as:

$$\begin{aligned}&\frac{\hbox {d}e_{1}}{\hbox {d}t/\varepsilon } = \varepsilon e_{2}-k_{3}\left| e_{1}\right| ^{\alpha _{3}}\mathrm{sign}(e_{1})\nonumber \\&\frac{\hbox {d}\varepsilon e_{2}}{\hbox {d}t/\varepsilon } = \varepsilon ^{2}e_{i+1}-k_{2}\left| e_{1}\right| ^{\alpha _{2}}\mathrm{sign}(e_{1}) \nonumber \\&\frac{\hbox {d}\varepsilon ^{2}e_{3}}{\hbox {d}t/\varepsilon } = -k_{1}\left| e_{1}\right| ^{\alpha _{1}}\mathrm{sign}(e_{1})-\varepsilon ^{3}\eta (t) \end{aligned}$$
(50)

Let a coordinate transformation be described as follow:

$$\begin{aligned}&\tau =t/\varepsilon ; z_{i}\left( \tau \right) =\varepsilon ^{i-1}e_{i}\left( t\right) ,\quad i=1,2,3;\nonumber \\&z=[ \begin{array}{ccc} z_{1}&z_{2}&z_{3} \end{array} ]^\mathrm{T}; \bar{\eta }(\tau )=\varepsilon ^{3}\eta (t) \end{aligned}$$
(51)

Therefore, we obtain \(z=\varXi (\varepsilon )e\), and Eq. (50) can be written as

$$\begin{aligned} \frac{\hbox {d}z_{1}}{\hbox {d}\tau }&= z_{2}-k_{3}\left| z_{1}\right| ^{\alpha _{3}}\mathrm{sign}(z_{1})\nonumber \\ \frac{\hbox {d}z_{2}}{\hbox {d}\tau }&= z_{3}-k_{2}\left| z_{1}\right| ^{\alpha _{2}}\mathrm{sign}(z_{1})\nonumber \\ \frac{\hbox {d}z_{3}}{\hbox {d}\tau }&= -k_{1}\left| z_{1}\right| ^{\alpha _{1}}\mathrm{sign}(z_{1})-\bar{\eta }(\tau ) \end{aligned}$$
(52)

Therefore, we obtain

$$\begin{aligned} \delta =\underset{\tau \in [0,\infty )}{\sup }\left| \bar{\eta } (\tau )\right| \le \varepsilon ^{3}L_{d} \end{aligned}$$
(53)

From Lemma 1, Theorem 2 and Eq. (53), for Eq. (52), there exist positive constants \(\mu \) and \(\varGamma \left( z\left( 0\right) \right) \), such that

$$\begin{aligned} \left\| z\left( \tau \right) \right\| \le \mu \delta ^{\gamma }=\mu (\varepsilon ^{3}L_{d})^{\gamma },\forall \tau \in [\varGamma \left( z\left( 0\right) \right) , \infty )\nonumber \\ \end{aligned}$$
(54)

Therefore, from coordinate transformation (51), we obtain

$$\begin{aligned}&\Vert [\begin{array}{ccc} e_{1}&\varepsilon e_{2}&\varepsilon ^{2}e_{3} \end{array} ^\mathrm{T}\Vert \nonumber \\&\quad \le \mu (\varepsilon ^{3}L_{d})^{\gamma },\forall t\in [\varepsilon \varGamma \left( \varXi (\varepsilon )e\left( {0}\right) \right) ,\infty ) \end{aligned}$$
(55)

Thus, the following inequality holds:

$$\begin{aligned} \left| e_{i}\right| \le \mu (\varepsilon ^{3}L_{d})^{\gamma }\varepsilon ^{-i+1}=L\varepsilon ^{3\gamma -i+1} \end{aligned}$$
(56)

\(\forall t\in [\varepsilon \varGamma \left( \varXi (\varepsilon )e\left( {0} \right) \right) , \infty )\), where \(i=1,2,3\), and \(L=\mu L_{d}^{\gamma }\). To make \(3\gamma -i+1>1,\, i=1,2,3\), from Theorem 2, we let

$$\begin{aligned} \beta \in \left( 0,1/2\right) \end{aligned}$$
(57)

In fact, from Theorem 1, \(\beta \) can be chosen to be arbitrarily small. Hence, the requirement that \(\beta \) lie in \(\beta \in \left( 0,1/2\right) \) is not restrictive. Accordingly, we can obtain \(\gamma =\left( {1-}\beta \right) /\beta >1\). Thus, \(3\gamma -3+1>1\) holds. Therefore, \(3\gamma -i+1>1\) for \(i=1,2,3\). The choice of \(\beta \) leads to \(3\gamma -i+1>1\) in (56) which implies that for \(\varepsilon \in (0,1)\), the ultimate bound (56) on the estimation error is of higher order than the perturbation.

Finally, from the Routh–Hurwitz stability criterion, polynomial \(s^{3}+k_{3}s^{2}+k_{2}s+k_{1}\) is Hurwitz if \( k_{1}>0,k_{3}>0,k_{2}>k_{1}/k_{3}\). This concludes the proof. \(\square \)

Proof of Theorem 4

The system error for Eqs. (11) and (10) is given by:

$$\begin{aligned} \dot{e}_{1}&= e_{2}-\frac{k_{3}}{\varepsilon }\left| e_{1}\right| ^{\alpha _{3}}\mathrm{sign}(e_{1}-\sigma (t))\nonumber \\ \dot{e}_{2}&= e_{3}-\frac{k_{2}}{\varepsilon ^{2}}\left| e_{1}\right| ^{\alpha _{2}}\mathrm{sign}(e_{1}-\sigma (t))\nonumber \\ \dot{e}_{3}&= -\frac{k_{1}}{\varepsilon ^{3}}\left| e_{1}\right| ^{\alpha _{1}}\mathrm{sign}(e_{1}-\sigma (t))-\eta (t) \end{aligned}$$
(58)

Equation (58) can be rewritten as:

$$\begin{aligned} \frac{\hbox {d}e_{i}}{\hbox {d}t/\varepsilon }&= \varepsilon e_{2}-k_{3}\left| e_{1}-\sigma (t)\right| ^{\alpha _{3}}\mathrm{sign}(e_{1}-\sigma (t))\nonumber \\ \frac{\hbox {d}\varepsilon e_{2}}{\hbox {d}t/\varepsilon }&= \varepsilon ^{2}e_{3}-k_{2}\left| e_{1}-\sigma (t)\right| ^{\alpha _{2}}\mathrm{sign}(e_{1}-\sigma (t))\nonumber \\ \frac{\hbox {d}\varepsilon ^{2}e_{3}}{\hbox {d}t/\varepsilon }&= -k_{1}\left| e_{1}-\sigma (t)\right| ^{\alpha _{1}}\mathrm{sign}(e_{1}-\sigma (t))\nonumber \\&-\varepsilon ^{n}\eta (t) \end{aligned}$$
(59)

Let

$$\begin{aligned} \tau&= t/\varepsilon , z_{i}\left( \tau \right) =\varepsilon ^{i-1}e_{i}\left( t\right) , \quad i=1,2,3,\nonumber \\ z&= [ \begin{array}{ccc} z_{1}&z_{2}&z_{3} \end{array} ]^\mathrm{T},\bar{\sigma }(\tau )=d(t),\bar{\eta }(\tau )=\varepsilon ^{n}\eta (t) \end{aligned}$$
(60)

therefore, we have \(z=\varXi (\varepsilon )e\). The Eq. (59) can be written as

$$\begin{aligned} \frac{\hbox {d}z_{1}}{\hbox {d}\tau }&= z_{2}-k_{3}\left| z_{1}-\bar{\sigma }(\tau )\right| ^{\alpha _{3}}\mathrm{sign}(z_{1}-\bar{\sigma }(\tau ))\nonumber \\ \frac{\hbox {d}z_{2}}{\hbox {d}\tau }&= z_{3}-k_{2}\left| z_{1}-\bar{\sigma }(\tau )\right| ^{\alpha _{2}}\mathrm{sign}(z_{1}-\bar{\sigma }(\tau ))\nonumber \\ \frac{\hbox {d}z_{3}}{\hbox {d}\tau }&= -k_{1}\left| z_{1}-\bar{\sigma }(\tau )\right| ^{\alpha _{1}}\mathrm{sign}(z_{1}-\bar{\sigma }(\tau ))-\bar{\eta }(\tau )\nonumber \\ \end{aligned}$$
(61)

Furthermore, Eq. (61) can be rewritten as

$$\begin{aligned} \frac{\hbox {d}z_{1}}{\hbox {d}\tau }&= z_{2}-k_{3}\left| z_{1}\right| ^{\alpha _{3}}\mathrm{sign}(z_{1})\nonumber \\&-\,k_{3}\{\left| z_{1}-\bar{\sigma }(\tau )\right| ^{\alpha _{3}}\mathrm{sign}(z_{1}-\bar{\sigma }(\tau ))\nonumber \\&-\left| z_{1}\right| ^{\alpha _{3}}\mathrm{sign}(z_{1})\}\nonumber \\ \frac{\hbox {d}z_{2}}{\hbox {d}\tau }&= z_{3}-k_{2}\left| z_{1}\right| ^{\alpha _{2}}\mathrm{sign}(z_{1})\nonumber \\&-\,k_{2}\{\left| z_{1}-\bar{\sigma }(\tau )\right| ^{\alpha _{2}}\mathrm{sign}(z_{1}-\bar{\sigma }(\tau ))\nonumber \\&-\,\left| z_{1}\right| ^{\alpha _{2}}\mathrm{sign}(z_{1})\}\nonumber \\ \frac{\hbox {d}z_{3}}{\hbox {d}\tau }&= -k_{1}\left| z_{1}\right| ^{\alpha _{1}}\mathrm{sign}(z_{1})\nonumber \\&-\,k_{1}\{\left| z_{1}-\bar{\sigma }(\tau )\right| ^{\alpha _{1}}\mathrm{sign}(z_{1}-\bar{\sigma }(\tau ))\nonumber \\&-\,\left| z_{1}\right| ^{\alpha _{1}}\mathrm{sign}(z_{1})\} -\bar{\eta }(\tau ) \end{aligned}$$
(62)

Let

$$\begin{aligned}&g\left( \tau , z\left( \tau \right) \right) \nonumber \\&\quad =[ \begin{array}{ccc} g_{1}\left( \tau , z\left( \tau \right) \right)&g_{2}\left( \tau , z\left( \tau \right) \right)&g_{3}\left( \tau , z\left( \tau \right) \right) \end{array} ]^\mathrm{T}\nonumber \\ \end{aligned}$$
(63)

where

$$\begin{aligned} g_{1}\left( \tau , z\left( \tau \right) \right)&= -k_{3}\{\left| z_{1}- \bar{\sigma }(\tau )\right| ^{\alpha _{3}}\mathrm{sign}(z_{1}\nonumber \\&\qquad -\,\bar{\sigma }(\tau ))-\left| z_{1}\right| ^{\alpha _{3}}\mathrm{sign}(z_{1})\}\nonumber \\ g_{2}\left( \tau , z\left( \tau \right) \right)&= -k_{2}\{\left| z_{1}- \bar{\sigma }(\tau )\right| ^{\alpha _{2}}\mathrm{sign}(z_{1}\nonumber \\&\qquad -\,\bar{\sigma }(\tau )-\left| z_{1}\right| ^{\alpha _{2}}\mathrm{sign}(z_{1}))\}\nonumber \\ g_{3}\left( \tau , z\left( \tau \right) \right)&= -k_{1}\{\left| z_{1}- \bar{\sigma }(\tau )\right| ^{\alpha _{1}}\mathrm{sign}(z_{1}\nonumber \\&\qquad -\,\bar{\sigma }(\tau ))-\left| z_{1}\right| ^{\alpha _{1}}\mathrm{sign}(z_{1})\}-\bar{\eta }(\tau )\nonumber \\ \end{aligned}$$
(64)

Therefore, from Assumption 1 and Remark 1, we obtain

$$\begin{aligned} \delta&= \underset{(\tau , z)\in R^{4}}{\sup }\left\| g\left( \tau ,z\left( \tau \right) \right) \right\| \nonumber \\&\le \sum \limits _{{i=1}}^{{3} }2^{1-\alpha _{3-i+1}}k_{3-i+1}L_{\sigma }^{\alpha _{3-i+1}}+\varepsilon ^{3}L_{d}\nonumber \\&\le \varepsilon ^{3}L_{d}+L_{\sigma }^{\alpha _{p}}\sum \limits _{{i=1}}^{{3 }}2^{1-\alpha _{3-i+1}}k_{3-i+1} \end{aligned}$$
(65)

where \(L_{\sigma }^{\alpha _{p}}=L_{\sigma }^{\alpha _{1}}\) when \( 0<L_{\sigma }<1\), and \(L_{\sigma }^{\alpha _{p}}=L_{\sigma }^{\alpha _{3}}\) when \(L_{\sigma }>1\). In fact, we can calculate, respectively, the minimum and maximal values of the following expression [defined in Eq. (45)]:

$$\begin{aligned} \alpha _{3-i+1}=\frac{i\alpha _{1}+3-i}{3},\quad i=1,2,3 \end{aligned}$$
(66)

Defining the following function

$$\begin{aligned} \varPsi (s)=\frac{s\alpha _{1}+3-s}{3},s\in (0,+\infty ) \end{aligned}$$
(67)

and taking derivative of \(\varPsi (s)\) with respect to variable \(s\), we obtain

$$\begin{aligned} \frac{\hbox {d}\varPsi (s)}{\hbox {d}s}=\frac{\alpha _{1}-1}{3}<0,s\in (0,+\infty ) \end{aligned}$$
(68)

Because \(\alpha _{1}\in (0,1)\), function \(\varPsi (s)\) is monotone decreasing with respect to \(s\). Moreover, the sequence \(\{1,2,3\}\) is monotone increasing in \((0,+\infty )\). Therefore,

$$\begin{aligned} \underset{i\in \left\{ 1,2,3\right\} }{\min }\left\{ \alpha _{3-i+1}\right\} =\alpha _{1} \end{aligned}$$
(69)

and

$$\begin{aligned} \underset{i\in \left\{ 1,2,3\right\} }{\max }\left\{ \alpha _{3-i+1}\right\} =\alpha _{3} \end{aligned}$$
(70)

Therefore, \(L_{\sigma }^{\alpha _{p}}=\underset{i\in \left\{ 1,2,3\right\} }{ \max }\left\{ L_{\sigma }^{\alpha _{3-i+1}}\right\} =L_{\sigma }^{\alpha _{1}}\) when \(\left| L_{\sigma }\right| <1\); and \(L_{\sigma }^{\alpha _{p}}=\underset{i\in \left\{ 1,2,3\right\} }{\max }\left\{ L_{\sigma }^{\alpha _{3-i+1}}\right\} =L_{\sigma }^{\alpha _{3}}\) when \(\left| L_{\sigma }\right| >1\).

From Lemma 1, Theorem 2 and Eq. (65), for Eq. (62), there exist positive constants \(\mu \) and \(\varGamma \left( z\left( 0\right) \right) \), such that

$$\begin{aligned}&\left\| z\left( \tau \right) \right\| \le \mu \delta ^{\gamma }\nonumber \\&\quad \le \mu \left( \varepsilon ^{3}L_{d}+L_{\sigma }^{\alpha _{p}}\sum \limits _{{i=1}}^{{3} }2^{1-\alpha _{3-i+1}}k_{3-i+1}\right) ^{\gamma } \end{aligned}$$
(71)

for \(\forall \tau \in [\varGamma \left( z\left( 0\right) \right) ,\infty )\). From coordinate transformation (60), we obtain

$$\begin{aligned}&\Vert \left[ \begin{array}{ccc} e_{1} \varepsilon e_{2} \varepsilon ^{2}e_{3} \end{array} \right] \Vert \nonumber \\&\quad \le \mu \left( \varepsilon ^{3}L_{d}+L_{\sigma }^{\alpha _{p}}\sum \limits _{{i=1}}^{{3}}2^{1-\alpha _{3-i+1}}k_{3-i+1}\right) ^{\gamma } \end{aligned}$$
(72)

for \(\forall t\in [\varepsilon \varGamma \left( {\varXi (\varepsilon )e} \left( {0}\right) \right) , \infty )\). Thus, the following inequality holds:

$$\begin{aligned} \left| e_{i}\right| \le L(\delta _{di})^{\gamma },i\!=\!1,2,3,\forall t\!\in \! [\varepsilon \varGamma \left( {\varXi (\varepsilon )e}\left( {0} \right) \right) , \infty )\nonumber \\ \end{aligned}$$
(73)

where \(L=\mu L_{d}^{\gamma }\), \(\delta _{di}=\varepsilon ^{3-\frac{i-1}{ \gamma }}+\frac{L_{\sigma }^{\alpha _{p}}}{L_{d}}\sum _{{i=1}}^{{3} }2^{1-\alpha _{3-i+1}}\) \(k_{3-i+1}\varepsilon ^{-\frac{i-1}{\gamma }}\), \(i=1,2,3 \). If \(\varepsilon \in \left( 0,1\right) \) and \(L_{\sigma }<\left( \frac{1-\varepsilon ^{3}}{\sum _{{i=1}}^{{3}}2^{1-\alpha _{3-i+1}}k_{3-i+1}}L_{d}\right) ^{\frac{1}{\alpha _{p}}}\), then

$$\begin{aligned} 0<\varepsilon ^{3}+\frac{L_{\sigma }^{\alpha _{p}}}{L_{d}}\sum \limits _{{i=1} }^{{3}}2^{1-\alpha _{3-i+1}}k_{3-i+1}<1 \end{aligned}$$
(74)

Furthermore, from Theorem 1, \(\beta \) can be chosen to be arbitrarily small. Hence, the requirement that \(\beta \) lies on

$$\begin{aligned} \beta \in \left( 0,\min \left\{ \frac{1}{\frac{3\log \varepsilon }{\log (\varepsilon ^{3}+\frac{L_{\sigma }^{\alpha _{p}}}{L_{d}}\sum \limits _{{i=1} }^{{3}}2^{1-\alpha _{3-i+1}}k_{3-i+1})}+1},\frac{1}{2}\right\} \right) \nonumber \\ \end{aligned}$$
(75)

is not restrictive. Accordingly, we can obtain

$$\begin{aligned} \gamma&= (1-\beta )/\beta \nonumber \\&> \max \left\{ \frac{3\log \varepsilon }{\log \left( \varepsilon ^{3}+\frac{L_{\sigma }^{\alpha _{p}}}{L_{d}}\sum _{{i=1}}^{{3} }2^{1-\alpha _{3-i+1}}k_{3-i+1}\right) },1\right\} \nonumber \\ \end{aligned}$$
(76)

Therefore,

$$\begin{aligned} \gamma \log \left( \varepsilon ^{3}+\frac{L_{\sigma }^{\alpha _{p}}}{L_{d}} \sum \limits _{{i=1}}^{{3}}2^{1-\alpha _{3-i+1}}k_{3-i+1}\right) <3\log \varepsilon \nonumber \\ \end{aligned}$$
(77)

i.e.,

$$\begin{aligned} \varepsilon ^{3}+\frac{L_{\sigma }^{\alpha _{p}}}{L_{d}}\sum \limits _{{i=1}}^{ {3}}2^{1-\alpha _{3-i+1}}k_{3-i+1}<\varepsilon ^{\frac{3}{\gamma }} \end{aligned}$$
(78)

Therefore, from \(\varepsilon \in \left( 0,1\right) \) and \(\gamma >3\), we can obtain

$$\begin{aligned} \varepsilon ^{\frac{3}{\gamma }}<\varepsilon ^{\frac{i-1}{\gamma }},\quad i=1,2,3 \end{aligned}$$
(79)

Then,

$$\begin{aligned} \delta _{di}\!=\!\varepsilon ^{3-\frac{i-1}{\gamma }}\!+\!\frac{L_{\sigma }^{\alpha _{p}}}{L_{d}}\sum \limits _{{i=1}}^{{3}}2^{1-\alpha _{3-i+1}}k_{3-i+1}\varepsilon ^{-\frac{i-1}{\gamma }}\!<\!1\nonumber \\ \end{aligned}$$
(80)

where \(i=1,2,3\). The choice of \(\phi \) leads to \(\gamma >1\) in (73) which implies that for \(\delta _{di}\in (0,1)\), the ultimate bound (73) on the estimation error is of higher order than the perturbation. Consequently, the presented augmented observer leads to perform rejection of low-level persistent disturbances. This concludes the proof. \(\square \)

Proof of Theorem 5

In the light of Corollary 1, for \(t\ge t_s\), the observation signals \( \left\| \widehat{p}_{p}-p_{p}\right\| \le L\varepsilon ^{3\gamma },\, \left\| \widehat{\dot{p}}_{p}\right. \) \(\left. -\dot{p}_{p}\right\| \le L\varepsilon ^{3\gamma -1},\, \left\| \widehat{\delta }_{p}-\delta _{p}\right\| \le L\varepsilon ^{3\gamma -2}\), where

$$\begin{aligned}&p_{p}=\left[ \begin{array}{c} x \\ y \\ z \end{array} \right] , \quad \dot{p}_{p}=\left[ \begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{z} \end{array} \right] , \quad \widehat{p}_{p}=\left[ \begin{array}{c} \widehat{x} \\ \widehat{y} \\ \widehat{z} \end{array} \right] , \nonumber \\&\widehat{\dot{p}}_{p}=\left[ \begin{array}{c} \widehat{\dot{x}} \\ \widehat{\dot{y}} \\ \widehat{\dot{z}} \end{array} \right] \end{aligned}$$
(81)

Considering controller (39), the closed-loop error system for position dynamics is

$$\begin{aligned} \ddot{e}_{p}&= -k_{p1}e_{p}-k_{p2}\dot{e}_{p}\nonumber \\&-\,k_{p1}(\widehat{p} _{p}-\!p_{p})\!-k_{p2}(\widehat{\dot{p}}_{p}\!-\!\dot{p}_{p}) -m^{-1}(\widehat{\delta }_{p}\!-\!\delta _{p})\nonumber \\ \end{aligned}$$
(82)

For \(t\ge t_{s}\) and sufficiently small \(\varepsilon \), selecting the Lyapunov function be \(V_{p}=k_{p1}e_{p}^{T}e_{p}+\frac{1}{2}\dot{e}_{p}^{T} \dot{e}_{p}\), we can obtain that \(e_{p}\rightarrow 0\) and \(\dot{e} _{p}\rightarrow 0\) as \(t\rightarrow \infty \). This concludes the proof.\(\square \)

Proof of Theorem 6

In the light of Corollary 1, for \(t\ge t_s\), the observation signals \( \left\| \widehat{p}_{a}-p_{a}\right\| \le L\varepsilon ^{3\gamma },\, \left\| \widehat{\dot{p}}_{a}\right. \) \(\left. -\dot{p}_{a}\right\| \le L\varepsilon ^{3\gamma -1},\, \left\| \widehat{\delta }_{a}-\delta _{a}\right\| \le L\varepsilon ^{3\gamma -2}\), where

$$\begin{aligned}&a_{a}=\left[ \begin{array}{c} \psi \\ \theta \\ \phi \end{array} \right] , \quad \dot{a}_{a}=\left[ \begin{array}{c} \dot{\psi } \\ \dot{\theta } \\ \dot{\phi } \end{array} \right] , \quad \widehat{a}_{a}=\left[ \begin{array}{c} \widehat{\psi } \\ \widehat{\theta } \\ \widehat{\phi } \end{array} \right] , \nonumber \\&\quad \widehat{\dot{a}}_{a}=\left[ \begin{array}{c} \widehat{\dot{\psi }} \\ \widehat{\dot{\theta }} \\ \widehat{\dot{\phi }} \end{array} \right] \end{aligned}$$
(83)

Considering controller (42), the closed-loop error system for attitude dynamics is

$$\begin{aligned} \ddot{e}_{a}&= -k_{a1}e_{a}-k_{a2}\dot{e}_{a}-k_{a1}(\widehat{a} _{a}-a_{a})-k_{a2}(\widehat{\dot{a}}_{a}-\dot{a}_{a})\nonumber \\&-J^{-1}(\widehat{\delta }_{a}-\delta _{a}) \end{aligned}$$

For \(t\ge t_{s}\) and sufficiently small \(\varepsilon \), selecting the Lyapunov function be \(V_{a}=k_{a1}e_{a}^{T}e_{a}+\frac{1}{2}\dot{e}_{a}^{T} \dot{e}_{a}\), we can obtain that \(e_{a}\rightarrow 0\) and \(\dot{e} _{a}\rightarrow 0\) as \(t\rightarrow \infty \). This concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shirinzadeh, B. Nonlinear augmented observer design and application to quadrotor aircraft. Nonlinear Dyn 80, 1463–1481 (2015). https://doi.org/10.1007/s11071-015-1955-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1955-y

Keywords

Navigation