Nonlinear Dynamics

, Volume 80, Issue 3, pp 1245–1256 | Cite as

On the stability of a class of nonlinear control systems

Original Paper


In this paper, the stability of a class of nonlinear control systems is analyzed. This class of systems is first converted into the equivalent affine control systems using the linear combination property of intervals where it is utilized to convert the nonlinear control systems into the equivalent linear control systems in works (Noori Skandari and Tohidi in Appl Math 2:646–652, 2011; Erfanian et al. in Int J Sens Comput Control 1(2):117–124, 2011; Tohidi and Noori Skandari in J Comput Model 1(2):145–156, 2011). Then to analyze the stability of the obtained affine control system, two analytical approaches based on the scalar and vector control Lyapunov functions are utilized and a control stabilizer is constructed. Finally, the results are simulated in some examples.


Control Lyapunov functions  Asymptotical stability  Nonlinear control systems Affine control systems Linear combination property of intervals 


  1. 1.
    Noori Skandari, M.H., Tohidi, E.: Numerical solution of a class of nonlinear optimal control problems using linearization and discretization. Appl. Math. 2, 646–652 (2011)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Erfanian, H.R., Noori Skandari, M.H., Kamyad, A.V.: Solving a class of separated continuous programming problems using linearization and discretization. Int. J. Sens. Comput. Control 1(2), 117–124 (2011)Google Scholar
  3. 3.
    Tohidi, E., Noori Skandari, M.H.: A new approach for a class of nonlinear optimal control problems using linear combination property of intervals. J. Comput. Model. 1(2), 145–156 (2011)MATHGoogle Scholar
  4. 4.
    Lyapunov, A.M.: The General Problem of the Stability of Motion. Kharkov Mathematical Society, Kharkov, Russia (1892)Google Scholar
  5. 5.
    Artstein, Z.: Stabilization with relaxed controls. Nonlinear Anal. 15(11), 1163–1173 (1983)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Freeman, R., Kokotovic, P.: Optimal nonlinear controllers for feedback linearizable systems, pp. 2722–2726. In: Proceedings of the American Control Conference, Seattle, Washington (1995)Google Scholar
  7. 7.
    Freeman, R., Kokotovic, P.: Robust Nonlinear Control Design. Birkhäuser, Boston (1996)CrossRefMATHGoogle Scholar
  8. 8.
    Freeman, R., Primbs, J.: Control Lyapunov functions: new ideas from and old source. In: Proceedings of the 35th IEEE Conference Decision and Control, pp. 3926–3931. Kobe, Japan (1996)Google Scholar
  9. 9.
    Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)Google Scholar
  10. 10.
    Sontag, E.D.: A Lyapunov-like characterization of asymptotic controllability. SIAM J. Control Optim. 21(3), 462–471 (1983)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Sontag, E.D.: A ‘Universal’ Construction of Artstein’s theorem on nonlinear stabilization. Syst. Control Lett. 13(2), 117–123 (1989)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Primbs, J.A., Nevistic, V., Doyle, J.C.: Nonlinear optimal control: a Lyapunov function and receding horizon perspective. Asian J. Control 1(1), 14–24 (1999)CrossRefGoogle Scholar
  13. 13.
    Tsinias, J.: Existence of control Lyapunov functions and applications to state feedback stabilizability of nonlinear systems. SIAM J. Control Optim. 29, 457–473 (1991)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Jurdjevic, V., Quinn, J.P.: Controllability and stability. J. Diff. Equ. 28, 381–389 (1978)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Nersesov, S.G., Haddad, W.M.: On the stability and control of nonlinear dynamical systems via vector Lyapunov functions. IEEE Trans. Autom. Control 51(2), 203–215 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Bellman, R.: Vector Lyapunov functions. SIAM J. Control 1, 32–34 (1962)MATHGoogle Scholar
  17. 17.
    Lakshmikantham, V., Matrosov, V.M., Sivasundaram, S.: Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems. Kluwer, Dordrecht, The Netherlands (1991)CrossRefMATHGoogle Scholar
  18. 18.
    Šiljak, D.D.: Large-Scale Dynamic Systems: Stability and Structure. Elsevier, New York (1978)MATHGoogle Scholar
  19. 19.
    Drici, Z.: New directions in the method of vector Lyapunov functions. J. Math. Anal. Appl. 184, 317–325 (1994)Google Scholar
  20. 20.
    Matrosov, V.M.: Method of vector Lyapunov functions of interconnected systems with distributed parameters (survey) (in Russian). Avtomatikai Telemekhanika 33, 63–75 (1972)MathSciNetGoogle Scholar
  21. 21.
    Lunze, J.: Stability analysis of large-scale systems composed of strongly coupled similar subsystems. Automatica 25, 561–570 (1989)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Martynyuk, A.A.: Stability by Lyapunov’s Matrix Function Method with Applications. Marcel Dekker, New York (1998)MATHGoogle Scholar
  23. 23.
    Ghaffari, A., Tomizuka, M., Soltan, R.A.: The stability of limit cycles in nonlinear systems. Nonlinear Dyn. 56(3), 269–275 (2009)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Aniszewska, D., Rybaczuk, M.: Lyapunov type stability and Lyapunov exponent for exemplary multiplicative dynamical systems. Nonlinear Dyn. 54(4), 345–354 (2008)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Hochlenert, D.: Nonlinear stability analysis of a disk brake model. Nonlinear Dyn. 58(1–2), 63–73 (2009)CrossRefMATHGoogle Scholar
  26. 26.
    Long, X.-H., Balachandran, B.: Stability analysis for milling process. Nonlinear Dyn. 49(3), 349–359 (2007)CrossRefMATHGoogle Scholar
  27. 27.
    Ibanez, C.A., Frias, O.G., Castanon, M.S.: Lyapunov-based controller for the inverted pendulum cart system. Nonlinear Dyn. 40(4), 367–374 (2005)CrossRefMATHGoogle Scholar
  28. 28.
    Vorotnikov, V.I.: Partial Stability and Control. Birkhäuser, Boston, MA (1998)MATHGoogle Scholar
  29. 29.
    Chellaboina, V., Haddad, W.M.: A unification between partial stability and stability theory for time-varying systems. Control Syst. Mag. 22(6), 66–75 (2002)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Khalil, H.K.: Nonlinear Syst. Prentice- Hall, Upper Saddle River, NJ (1996)Google Scholar
  31. 31.
    Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. D. C. Heath, Boston, MA (1965)MATHGoogle Scholar
  32. 32.
    Hahn, W.: Stability of Motion. Springer, Berlin (1967)CrossRefMATHGoogle Scholar
  33. 33.
    Hale, J., LaSalle, J. P.: An invariance principle in the theory of stability. In: Mayaguez, P.R. (eds.) Proceedings of the International Symposium on Differential Equations and Dynamical Systems (1965)Google Scholar
  34. 34.
    Nikitin, S.: Global Controllability and Stabilization of Nonlinear Systems. World Scientific Publishing Co., Pte. Ltd., Singapore (1994)MATHGoogle Scholar
  35. 35.
    Sun, Z., Sam Ge, S.: Stability Theory of Switched Dynamical Systems. Springer, Berlin (2011)CrossRefMATHGoogle Scholar
  36. 36.
    Liao, X., Yu, P.: Absolute Stability Systems of Nonlinear Control. Springer, Berlin (2008)CrossRefMATHGoogle Scholar
  37. 37.
    Karafyllis, I., Jiang, Z.P.: Stability and Stabilization of Nonlinear Systems. Springer, Berlin (2011)CrossRefMATHGoogle Scholar
  38. 38.
    Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory. Springer, Berlin (2005)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Faculty of Mathematical SciencesUniversity of ShahroodShahroodIran

Personalised recommendations