Skip to main content
Log in

Bifurcation and chaos of gear-rotor–bearing system lubricated with couple-stress fluid

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study performs a systematic analysis of the dynamic behaviors of a gear pair system mounted on rotor–bearing system with strongly nonlinear effects including nonlinear suspension effect, nonlinear couple-stress fluid film force, nonlinear rub-impact force and nonlinear gear mesh force. The dynamic orbits of the system are observed using bifurcation diagrams plotted using the dimensionless rotational speed ratio as a control parameter. The onset of chaotic motion is specified from the phase diagrams, Poincaré maps, Lyapunov exponents and fractal dimension of the system. There exist various forms of periodic, sub-harmonic and chaotic motions at different bifurcation parameters. The simulation results revealed that highly non-periodic motions do exist in gear-rotor–bearing systems under those nonlinear effects. The results also confirm that the couple-stress fluid can suppress non-periodic vibrations, especially at lower rotational speeds. The results of this study allow suitable system parameters to be defined such that undesirable behaviors of the system can be avoided and the machinery life extended as a result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(c\) :

Radial clearance, \(c=R-r\)

\(C\) :

Viscous damping of the gear or the pinion

\(C_{1}\) :

Damping coefficient of the supported structure for bearing \(1\)

\(C_{2}\) :

Damping coefficient of the supported structure for bearing \(2\)

\(C_\mathrm{m}\) :

Damping coefficient of the gear mesh

\(C_\mathrm{r}\) :

Viscous damping of the rotor disk

\(C_{1\mathrm{p}}\) :

Dimensionless parameter, \(C_{1\mathrm{p}} =\frac{M_1}{M_\mathrm{p}}\)

\(C_{01}\) :

Dimensionless parameter, \(C_{01}=\frac{K}{K_{11} }\)

\(C_{2\mathrm{p}}\) :

Dimensionless parameter, \(C_{2\mathrm{p}} =\frac{M_2 }{M_\mathrm{p}}\)

\(C_{02}\) :

Dimensionless parameter, \(C_{02}=\frac{K}{K_{21} }\)

\(C_{\mathrm{r}2}\) :

Dimensionless parameter, \(C_{\mathrm{r}2}=\frac{K_\mathrm{r}}{K_{21}}\)

\(C_\mathrm{rp}\) :

Dimensionless parameter, \(C_\mathrm{rp} =\frac{M_\mathrm{r}}{M_\mathrm{p}}\)

\(E_\mathrm{p}\) :

Static transmission error

\(e\) :

Static transmission error and varies as a function of time

\(e_\mathrm{i}\) :

Offset of the journal center of the rotor relative to the X-coordinate direction

\(e_\mathrm{p}\) :

Dimensionless parameter, \(e_\mathrm{p}=E_\mathrm{p} /c\)

\(F_\mathrm{x1}, F_\mathrm{y1}\) :

Components of the fluid film force in the horizontal and vertical directions for bearing \(1\)

\(F_\mathrm{x2}, F_\mathrm{y2}\) :

Components of the fluid film force in the horizontal and vertical directions for bearing \(2\)

\(f\) :

Dimensionless parameter, \(f=\frac{M_\mathrm{p} g}{cK}\)

\(f_\mathrm{g}\) :

Dimensionless parameter, \(f_\mathrm{g}=\frac{Kg}{cM_\mathrm{p}}\)

\(f_\mathrm{e1}, f_{\varphi 1}\) :

Components of the fluid film force in radial and tangential directions for bearing \(1\)

\(f_\mathrm{e2}, f_{\varphi 2}\) :

Components of the fluid film force in radial and tangential directions for bearing \(2\)

\(G_\mathrm{gy}\) :

The inertia forces in the vertical gear mesh direction for gear, \(G_\mathrm{gy} =M_\mathrm{g} E_\mathrm{g} \ddot{\theta }_2 \cos \theta _2 \)

\(G_\mathrm{py}\) :

The inertia forces in the vertical gear mesh direction for pinion, \(G_\mathrm{py} =M_\mathrm{p} E_\mathrm{p} \ddot{\theta }_1 \cos \theta _1 \)

\(g\) :

Acceleration of gravity

\(K\) :

Stiffness coefficient of the shafts

\(K_{11}, K_{12}\) :

Stiffness coefficients of the springs supporting the two bearing housings for bearing \(1\)

\(K_{21}, K_{22}\) :

Stiffness coefficients of the springs supporting the two bearing housings for bearing \(2\)

\(K_\mathrm{m} \) :

Stiffness coefficient of the gear mesh

\(K_\mathrm{r}\) :

Stiffness coefficient of the rotor disk

\(L\) :

Bearing length

\(L_\mathrm{gy} \) :

The centrifugal forces in the vertical gear mesh direction for gear, \(L_\mathrm{gy} =M_\mathrm{g} E_\mathrm{g} \omega _\mathrm{g}^2 \sin \theta _2\)

\(L_\mathrm{py} \) :

The centrifugal forces in the vertical gear mesh direction for pinion, \(L_\mathrm{py} =M_\mathrm{p} E_\mathrm{p} \omega _\mathrm{p}^2 \sin \theta _1 \)

\(l\) :

Characteristic length of additives, \(l=(\frac{\eta }{\mu })^{1/2}\)

\(l^{*}\) :

Dimensionless couple-stress parameter, \(l^{*}=l/c\)

\(M_1 \) :

Mass of the bearing housing for bearing \(1\)

\(M_2 \) :

Mass of the bearing housing for bearing \(2\)

\(M_\mathrm{p}\) :

Mass of the pinion

\(M_\mathrm{g}\) :

Mass of the gear

\(M_\mathrm{r}\) :

Mass of the rotor

\(O_{1}\) :

Geometric centers of the bearing \(1\)

\(O_{2}\) :

Geometric centers of the bearing \(2\)

\(O_\mathrm{j1}\) :

Geometric centers of the journal \(1\)

\(O_\mathrm{j2}\) :

Geometric centers of the journal \(2\)

\(O_\mathrm{g}\) :

Center of gravity of the gear

\(O_\mathrm{p}\) :

Center of gravity of the pinion

\(O_\mathrm{r}\) :

Center of gravity of the rotor disk

\(p\) :

Pressure distribution in the fluid film

\(R\) :

Inner radius of the bearing housing

\(R_\mathrm{x}\) :

Component of rub-impact force in the horizontal direction

\(R_\mathrm{y}\) :

Component of rub-impact force in the vertical direction

\(r\) :

Radius of the journal.

\(s\) :

Rotational speed ratio, \(s\!=\!(\frac{\omega ^{2}}{\omega _\mathrm{n}^{2}})^{1/2}\)

\(s_1\) :

Dimensionless parameter, \(s_1 ^{2}\!=\! C_\mathrm{o1} C_{1\mathrm{p}}s^{2}\)

\(s_2 \) :

Dimensionless parameter, \(s_2 ^{2}\!=\! C_\mathrm{o2} C_{2\mathrm{p}}s^{2}\)

\(s_3 \) :

Dimensionless parameter, \(s_3 ^{2}\!=\! C_\mathrm{r2} C_\mathrm{rp}s^{2}\)

\(W_\mathrm{cx}\) :

The dynamic gear mesh force in the horizontal direction

\(W_\mathrm{cy}\) :

The dynamic gear mesh force in the vertical direction

\(X, Y, Z\) :

Horizontal, vertical and axial coordinates

\(x_\mathrm{j}, y_\mathrm{j}\) :

\(X_\mathrm{j}/c, Y_\mathrm{j}/c ,\, j=1,\;2,\;\mathrm{j}1,\;\mathrm{j}2,\;p,\;g,\;r\)

\(\alpha _\mathrm{a}\) :

Dimensionless parameter, \(\alpha _\mathrm{a} =\frac{K_{12} c^{2}K}{M_1 M_\mathrm{p} }\)

\(\alpha _\mathrm{b}\) :

Dimensionless parameter, \(\alpha _\mathrm{b} =\frac{K_{22} c^{2}K}{M_2 M_\mathrm{p} }\)

\(\beta \) :

Dimensionless unbalance parameter, \(\beta =E_\mathrm{p} /16\)

\(\beta _\mathrm{g} \) :

Dimensionless unbalance parameter, \(\beta _\mathrm{g} =E_\mathrm{p} /16\)

\(\beta _\mathrm{r} \) :

Dimensionless unbalance parameter, \(\beta _\mathrm{r} =\rho /c\)

\(\xi _1 \) :

Dimensionless parameter, \(\xi _1 =\frac{C_1 }{2\sqrt{K_1 M_1 }}\)

\(\xi _2 \) :

Dimensionless parameter, \(\xi _2 =\frac{C}{2\sqrt{KM_\mathrm{p} }}\)

\(\xi _3 \) :

Dimensionless parameter, \(\xi _3 =\frac{C_\mathrm{m} }{2\sqrt{KM_\mathrm{p} }}\)

\(\xi _4 \) :

Dimensionless parameter, \(\xi _4 =\frac{C}{2\sqrt{\frac{K}{M_\mathrm{p} }}M_\mathrm{g} }\)

\(\xi _5 \) :

Dimensionless parameter, \(\xi _5 =\frac{C_\mathrm{m} \sqrt{M_\mathrm{p} }}{2M_\mathrm{g} \sqrt{K}}\)

\(\xi _6 \) :

Dimensionless parameter, \(\xi _6 =\frac{C_2 }{2\sqrt{K_2 M_2 }}\)

\(\Lambda \) :

Dimensionless parameter, \(\Lambda =\frac{K_\mathrm{m} }{K}\)

\(\Lambda _\mathrm{g}\) :

Dimensionless parameter, \(\Lambda _\mathrm{g} =\frac{K_\mathrm{m} M_\mathrm{p}^2 }{M_\mathrm{g} K^{2}}\)

\(\rho \) :

Mass eccentricity of the rotor

\(\phi \) :

Rotational angle, \(\phi =\omega t\)

\(\omega \) :

Rotational speed of the shaft

\(\theta \) :

The angular position

\(\mu \) :

Oil dynamic viscosity

\(\eta \) :

A new material constant peculiar to fluids with couple stresses

\(\varepsilon _\mathrm{i}\) :

Eccentricity ratio, \(\varepsilon =e_\mathrm{i}/c\)

\(\omega _\mathrm{n}\) :

Natural frequency, \(\omega _\mathrm{n} =\sqrt{K/M_\mathrm{p} }\)

\(\omega _\mathrm{g}\) :

Dimensionless parameter, \(\omega _\mathrm{g} =\omega _\mathrm{n} /8\)

\(\omega _\mathrm{p} \) :

Dimensionless parameter, \(\omega _\mathrm{p} =\omega _\mathrm{n} /4\)

\(\varphi _\mathrm{i}\) :

Attitude angle of the rotor relative to the X-coordinate direction

References

  1. Brown, R.D., Addison, P., Chan, A.H.C.: Chaos in the unbalance response of journal bearings. Nonlinear Dyn. 5, 421–432 (1994)

    Article  Google Scholar 

  2. Adiletta, G., Guido, A.R., Rossi, C.: Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dyn. 10, 251–269 (1996)

    Article  Google Scholar 

  3. Adiletta, G., Guido, A.R., Rossi, C.: Nonlinear dynamics of a rigid unbalanced rotor in short bearings. Part I: theoretical analysis. Nonlinear Dyn. 14, 57–87 (1997)

    Article  MATH  Google Scholar 

  4. Adiletta, G., Guido, A.R., Rossi, C.: Nonlinear dynamics of a rigid unbalanced rotor in short bearings. Part II: theoretical analysis. Nonlinear Dyn. 14, 157–189 (1997)

    Article  Google Scholar 

  5. Vedmar, L., Anersson, A.: A method to determine dynamic loads on spur gear teeth and on bearings. J. Sound Vib. 267, 1065–1084 (2003)

    Article  Google Scholar 

  6. Kahraman, A., Singh, R.: Nonlinear dynamics of a spur gear pair. J. Sound Vib. 142, 49–75 (1990)

    Article  Google Scholar 

  7. Lin, H.H., Huston, R.L., Coy, J.J.: On dynamic loads in parallel shaft transmission: part 1-modeling and analysis. ASME J. Mech. Des. 110, 221–225 (1988)

    Google Scholar 

  8. Yoon, K.Y., Rao, S.S.: Dynamic load analysis of spur gears using a new tooth profile. ASME J. Mech. Des. 118, 1–6 (1996)

    Article  Google Scholar 

  9. Ichimaru, K., Hirano, F.: Dynamic behavior of heavy-loaded spur gears. ASME J. Mech. Des. 12, 373–381 (1974)

    Google Scholar 

  10. Amabili, M., Fregolent, A.: A method to identify model parameters and gear errors by vibrations of a spur gear pair. J. Sound Vib. 214, 339–357 (1998)

    Article  Google Scholar 

  11. Ozguven, H.N., Houser, D.R.: Mathematical models used in gear dynamics. J. Sound Vib. 121, 383–411 (1988)

    Article  Google Scholar 

  12. Ozguven, H.N., Houser, D.R.: Dynamic analysis of high speed gears by using loaded static transmission error. J. Sound Vib. 125, 71–83 (1988)

  13. Theodossiades, S., Natsiavas, S.: On geared rotordynamic systems with oil journal bearings. J. Sound Vib. 243, 721–745 (2001)

    Article  Google Scholar 

  14. Theodossiades, S., Natsiavas, S.: Periodic and chaotic dynamics of motor-driven gear-pair systems with backlash. Chaos Solitons Fractals 12, 2427–2440 (2001)

    Article  Google Scholar 

  15. Farshidianfar, A., Saghafi, A.: Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems. Nonlinear Dyn. 75, 783–806 (2014)

    Article  MathSciNet  Google Scholar 

  16. Chang-Jian, C.W.: Nonlinear dynamic analysis of a HSFD mounted gear-bearing system. Nonlinear Dyn. 62, 333–347 (2010)

    Article  MATH  Google Scholar 

  17. Oliver, D.R.: Load enhancement effects due to polymer thickening in a short model journal bearings. J. Non-Newton. Fluid Mech. 30, 185–196 (1988)

    Article  Google Scholar 

  18. Spikes, H.A.: The behaviour of lubricants in contacts: current understanding and future possibilities. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 28, 3–15 (1994)

    Article  Google Scholar 

  19. Shehawey, E.F.E., Mekheimer, K.S.: Couple-stresses in peristaltic transport of fluids. J. Phys. D Appl. Phys. 27, 1163–1170 (1994)

    Article  Google Scholar 

  20. Das, N.C.: Elastohydrodynamic lubrication theory of line contacts: couple stress fluid model. STLE Tribol. Trans. 40, 353–359 (1997)

    Article  Google Scholar 

  21. Das, N.C.: A study of optimum load-bearing capacity for slider bearings lubricated with couple stress fluids in magnetic field. Tribol. Int. 31, 393–400 (1998)

    Article  Google Scholar 

  22. Chang-Jian, C.W.: The bifurcation and chaos of a gear pair system based on a strongly nonlinear rotor–bearing system. Trans. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224, 1891–1904 (2010)

    Article  Google Scholar 

  23. Chang-Jian, C.W., Chen, C.K.: Bifurcation and chaos of a flexible rotor supported by turbulent journal bearings with non-linear suspension. Trans. Inst. Mech. Eng. Part J J. Eng. Tribol. 220, 549–561 (2006)

    Article  Google Scholar 

  24. Grassberger, P., Proccacia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983)

    Article  MathSciNet  Google Scholar 

  25. Chen, C.L., Yau, H.T.: Chaos in the imbalance response of a flexible rotor supported by oil film bearings with non-linear suspension. Nonlinear Dyn. 16, 71–90 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai-Wan Chang-Jian.

Appendices

Appendix 1

In this study, the non-Newtonian Reynolds-type equation for couple-stress fluid is as follows:

$$\begin{aligned}&\frac{\partial }{\partial x}\left( g(h,l)\frac{\partial p}{\partial x}\right) +\frac{\partial }{\partial z}\left( g(h,l)\frac{\partial p}{\partial z}\right) \nonumber \\&\quad =6\mu U\frac{\partial h}{\partial x}+12\mu \frac{\partial h}{\partial t}[20] \end{aligned}$$
(35)

where \(g(h,l)=h^{3}-12l^{2}h+24l^{3}\tanh (\frac{h}{2l})\,,\quad \frac{\partial h}{\partial x}=-\frac{c\varepsilon }{R}\sin \theta \, , \frac{\partial h}{\partial t}=c\dot{\varepsilon }\cos \theta +c\varepsilon \dot{\phi }\sin \theta , x{=}R\theta ,U=R\omega \,,\quad \varepsilon =\frac{e}{c}\) and \(h=c(1+\varepsilon \cos (\gamma -\varphi (t)))=c(1+\varepsilon \cos \theta )\). Thus, \(g(h,l)\) can also be performed as \(g(h,l)=c^{3}(1+\varepsilon \cos \theta )^{3}-12l^{2}c(1+\varepsilon \cos \theta )+24l^{3}\tanh (\frac{c(1+\varepsilon \cos \theta )}{2l})\), where \(l=(\frac{\eta }{\mu })^{1/2}\), in which \(\mu \) is the classical viscosity parameter and \(\eta \) is a new material constant peculiar to fluids with couple stresses, and Reynolds equation can be rewritten as

$$\begin{aligned}&\!\!\!\frac{\partial }{R\partial \theta }\left( g(h,l)\frac{\partial p}{R\partial \theta }\right) +\frac{\partial }{\partial z}\left( g(h,l)\frac{\partial p}{\partial z}\right) \nonumber \\&\quad \!\!\!=-6\mu \omega c\varepsilon \sin \theta +12\mu (c\dot{\varepsilon }\cos \theta +c\varepsilon \dot{\varphi }\sin \theta )\nonumber \\ \end{aligned}$$
(36)

Using the “short bearing approximation” \((\frac{L}{D}<0.25, \frac{\partial p}{\partial \theta }<<\frac{\partial p}{\partial z})\), we can set \(\frac{\partial p}{\partial \theta }=0\). The following equation can be introduced.

$$\begin{aligned} \frac{\partial ^{2}p}{\partial z^{2}}=\frac{-6\mu \omega c\varepsilon \sin \theta +12\mu (c\dot{\varepsilon }\cos \theta +c\varepsilon \dot{\varphi }\sin \theta )}{g(h,l)}\nonumber \\ \end{aligned}$$
(37)

with B.C. \(\left\{ {{\begin{array}{l} {\frac{\partial p}{\partial z}=0,\quad z=0} \\ {p=0,\quad z=\pm \frac{L}{2}} \\ \end{array} }} \right. \) then

$$\begin{aligned} p\!=\!-\frac{3\mu c}{g(h,l)}[(\omega \!-\!2\dot{\varphi })\varepsilon \sin \theta \!-\!2\dot{\varepsilon }\cos \theta ]\left( z^{2}\!-\!\frac{L^{2}}{4}\right) \nonumber \\ \end{aligned}$$
(38)

The resulting damping forces about the journal center in the radial and tangential directions are determined by integrating Eq. (38) over the area of the journal sleeve.

$$\begin{aligned}&\!\!\!f_\mathrm{r} =\int _0^\pi {\int _{-\frac{L}{2}}^{\frac{L}{2}} p } R\cos \theta \hbox {d}z\hbox {d}\theta \end{aligned}$$
(39)
$$\begin{aligned}&\!\!\!f_\mathrm{t} =\int _0^\pi {\int _{-\frac{L}{2}}^{\frac{L}{2}} p } R\sin \theta \hbox {d}z\hbox {d}\theta \end{aligned}$$
(40)
$$\begin{aligned} f_e =-f_\mathrm{r} ,\quad f_\varphi =-f_\mathrm{t} \end{aligned}$$

Therefore,

$$\begin{aligned}&f_e =-\frac{\mu L^{3}R}{2c^{2}}\int _0^\pi {\left\{ {\frac{[(\omega -2\dot{\varphi })\varepsilon \sin \theta -2\dot{\varepsilon }\cos \theta ]\cos \theta }{[(1+\varepsilon \cos \theta )^{3}-12(l^{*})^{2}(1+\varepsilon \cos \theta )+24(l^{*})^{3}\tanh (\frac{1+\varepsilon \cos \theta }{2l^{*}})]}} \right\} } d\theta \end{aligned}$$
(41)
$$\begin{aligned}&f_\varphi =-\frac{\mu L^{3}R}{2c^{2}}\int _0^\pi {\left\{ {\frac{[(\omega -2\dot{\varphi })\varepsilon \sin \theta -2\dot{\varepsilon }\cos \theta ]\sin \theta }{[(1+\varepsilon \cos \theta )^{3}-12(l^{*})^{2}(1+\varepsilon \cos \theta )+24(l^{*})^{3}\tanh (\frac{1+\varepsilon \cos \theta }{2l^{*}})]}} \right\} } d\theta \end{aligned}$$
(42)

Substituting Eqs. (41) and (42) into Eqs. (11)–(14) enables the values of \(F_\mathrm{x1}, F_\mathrm{y1}, F_\mathrm{x2 }\) and \(F_\mathrm{y2}\) to be obtained. The radial impact force \(f_\mathrm{n} \) and the tangential rub force \(f_\mathrm{t} \) could be expressed as

$$\begin{aligned}&f_\mathrm{n} =(e-\delta )k_\mathrm{c}\end{aligned}$$
(43)
$$\begin{aligned}&f_\mathrm{t} =(f+bv)f_\mathrm{n} , \quad \hbox { if } \; e\ge \delta \end{aligned}$$
(44)

Then, we could get the rub-impact forces in the horizontal and vertical directions.

$$\begin{aligned} R_\mathrm{x} =\frac{(e-\delta )k_\mathrm{c} }{e}[X-(f+bv)Y]\end{aligned}$$
(45)
$$\begin{aligned} R_\mathrm{y} =\frac{(e-\delta )k_\mathrm{c} }{e}[(f+bv)X+Y] \end{aligned}$$
(46)

Appendix 2

$$\begin{aligned}&\alpha _1 =-\frac{\mu L^{3}R}{2c^{2}}\\&\beta _1 =\int _0^\pi {\frac{\sin \theta \cos \theta }{[(1+\varepsilon _1 \cos \theta )^{3}-12(l^{*})^{2}(1+\varepsilon _1 \cos \theta )+24(l^{*})^{3}\tanh (\frac{1+\varepsilon _1 \cos \theta }{2l^{*}})]}} d\theta \\&\gamma _1 =\int _0^\pi {\frac{\cos ^{2}\theta }{[(1+\varepsilon _1 \cos \theta )^{3}-12(l^{*})^{2}(1+\varepsilon _1 \cos \theta )+24(l^{*})^{3}\tanh (\frac{1+\varepsilon _1 \cos \theta }{2l^{*}})]}} d\theta \\&\delta _1 =\int _0^\pi {\frac{\sin ^{2}\theta }{[(1+\varepsilon _1 \cos \theta )^{3}-12(l^{*})^{2}(1+\varepsilon _1 \cos \theta )+24(l^{*})^{3}\tanh (\frac{1+\varepsilon _1 \cos \theta }{2l^{*}})]}} d\theta \\&\alpha _2 =-\frac{\mu L^{3}R}{2c^{2}}\\&\beta _2 =\int _0^\pi {\frac{\sin \theta \cos \theta }{[(1+\varepsilon _2 \cos \theta )^{3}-12(l^{*})^{2}(1+\varepsilon _2 \cos \theta )+24(l^{*})^{3}\tanh (\frac{1+\varepsilon _2 \cos \theta }{2l^{*}})]}} d\theta \\&\gamma _2 =\int _0^\pi {\frac{\cos ^{2}\theta }{[(1+\varepsilon _2 \cos \theta )^{3}-12(l^{*})^{2}(1+\varepsilon _2 \cos \theta )+24(l^{*})^{3}\tanh (\frac{1+\varepsilon _2 \cos \theta }{2l^{*}})]}} d\theta \\&\delta _2 =\int _0^\pi {\frac{\sin ^{2}\theta }{[(1+\varepsilon _2 \cos \theta )^{3}-12(l^{*})^{2}(1+\varepsilon _2 \cos \theta )+24(l^{*})^{3}\tanh (\frac{1+\varepsilon _2 \cos \theta }{2l^{*}})]}} d\theta \end{aligned}$$

where \(l^{*}=l/c\) is the dimensionless parameter for \(l\); c is the radial clearance; \(l=(\frac{\eta }{\mu })^{1/2}\), in which \(\mu \) is the classical viscosity parameter and \(\eta \) is a new material constant peculiar to fluids with couple stresses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang-Jian, CW. Bifurcation and chaos of gear-rotor–bearing system lubricated with couple-stress fluid. Nonlinear Dyn 79, 749–763 (2015). https://doi.org/10.1007/s11071-014-1701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1701-x

Keywords

Navigation