Nonlinear Dynamics

, Volume 74, Issue 1–2, pp 277–286 | Cite as

Impedance control of robots using voltage control strategy

Original Paper


Impedance control provides a unified solution for the position and force control of robot manipulators. The dynamic behavior of a robotic system in response to environment is prescribed by an impedance model formed as Thevenin model. This model is certain and linear while the robot manipulator is highly nonlinear, coupled, and uncertain. Therefore, impedance control must overcome nonlinearity, coupling, and uncertainty to convert the robotic system to the impedance model. To overcome these problems, this paper presents a novel impedance control for electrically driven robots, which is free from the manipulator dynamics. The novelty of this paper is the use of voltage control strategy to develop the impedance control. Compared with the commonly used impedance control, which is based on the torque control strategy, it is computationally simpler, more efficient, and robust. The mathematical verification and simulation results show the effectiveness of the control method.


Impedance control Electrically driven robots Voltage control strategy Unified position and force control Thevenin model 


  1. 1.
    Craig, J.J.: Introduction to Robotics. Addison-Wesley, Reading (1989) MATHGoogle Scholar
  2. 2.
    Raibert, M.H., Craig, J.J.: Hybrid position and force control of robot manipulators. J. Dyn. Syst. Meas. Control 102, 126–133 (1981) CrossRefGoogle Scholar
  3. 3.
    Khatib, O.: A unified approach for motion and force control of robot manipulators: the operation-space formulation. IEEE Trans. Robot. Autom. 3(1), 43–53 (1987) CrossRefGoogle Scholar
  4. 4.
    Hogan, N.: Impedance control: an approach to manipulator, Parts I, II, III. J. Dyn. Syst. Meas. Control 3, 1–24 (1985) CrossRefGoogle Scholar
  5. 5.
    Anderson, R., Spong, M.: Hybrid impedance control of robotic manipulators. IEEE Trans. Robot. Autom. 4(5), 549–555 (1988) CrossRefGoogle Scholar
  6. 6.
    Fateh, M.M., Alavi, S.S.: Impedance control of an active suspension system. Mechatronics 19, 134–140 (2009) CrossRefGoogle Scholar
  7. 7.
    Fateh, M.M.: Robust impedance control of a hydraulic suspension system. Int. J. Robust Nonlinear Control 20(8), 858–872 (2010) MathSciNetGoogle Scholar
  8. 8.
    Fateh, M.M., Moradi Zirkohi, M.: Adaptive impedance control of a hydraulic suspension system using particle swarm optimization. Veh. Syst. Dyn. 49(12), 1951–1965 (2011) CrossRefGoogle Scholar
  9. 9.
    Akdogan, E., Arif Adli, M.: The design and control of a therapeutic exercise robot for lower limb rehabilitation physiotherabot. Mechatronics 21, 509–522 (2011) CrossRefGoogle Scholar
  10. 10.
    Hogan, N.: On the stability of manipulators performing contact tasks. IEEE J. Robot. Autom. 4, 677–686 (1988) CrossRefGoogle Scholar
  11. 11.
    Colgate, J.E., Hogan, N.: Robust control of dynamically interacting systems. Int. J. Control 48(1), 65–88 (1988) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T.: Robot aided neurorehabilitation. IEEE Trans. Rehabil. Eng. 6(1), 75–87 (1998) CrossRefGoogle Scholar
  13. 13.
    Richardson, R., Brown, M., Bhakta, M., Levesley, M.C.: Design and control of a three degree of freedom pneumatic physiotherapy robot. Robotica 21, 589–604 (2003) CrossRefGoogle Scholar
  14. 14.
    Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modelling and Control. Wiley, New York (2006) Google Scholar
  15. 15.
    Natale, C.: Interaction Control of Robot Manipulators: Six-Degrees-of-Freedom Tasks. Springer Tracts in Advanced Robotics (STAR). Springer, New York (2003) Google Scholar
  16. 16.
    Zollo, L., Siciliano, B., Luca Guglielmelli, A.D.E., Dario, P.: Compliance control for an anthropomorphic robot with elastic joints: theory and experiments. J. Dyn. Syst. Meas. Control 127(3), 321–328 (2005) CrossRefGoogle Scholar
  17. 17.
    Albu-Schaffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2007) CrossRefGoogle Scholar
  18. 18.
    Ott, C., Albu-Schaffer, A., Kugi, A., Hirzinger, G.: On the passivity based impedance control of flexible joint robots. IEEE Trans. Robot. 24(2), 416–429 (2008) CrossRefGoogle Scholar
  19. 19.
    Colbaugh, R., Seraji, H., Glass, K.: Direct adaptive impedance control of robot manipulators. J. Robot. Syst. 10, 217–248 (1993) CrossRefMATHGoogle Scholar
  20. 20.
    Chien, M.-C., Huang, A.-C.: Adaptive impedance controller design for flexible-joint electrically-driven robots without computation of the regressor matrix. Robotica 30(1), 133–144 (2012) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kazerooni, H., Sheridan, T.B., Houpt, P.K.: Robust compliant motion for manipulators. Part 1: The fundamental concepts of compliant motion. IEEE J. Robot. Autom. 2(2), 83–92 (1986) CrossRefGoogle Scholar
  22. 22.
    Kazerooni, H., Sheridan, T.B., Houpt, P.K.: Robust compliant motion for manipulators. Part 2: Design method. IEEE J. Robot. Autom. 2(2), 93–105 (1986) CrossRefGoogle Scholar
  23. 23.
    Chan, S.P., Yao, B., Gao, W.B., Cheng, M.: Robust impedance control of robot manipulator. Int. J. Robot. Autom. 6(4), 220–227 (1991) Google Scholar
  24. 24.
    Jung, S., Hsia, T.C.: Neural network impedance force control of robot manipulator. IEEE Trans. Ind. Electron. 45(3), 451–461 (1998) CrossRefGoogle Scholar
  25. 25.
    Seul, J., Hsia, T.C.: Robust neural force control scheme under uncertainties in robot dynamics and unknown environment. IEEE Trans. Ind. Electron. 47, 403–412 (2000) CrossRefGoogle Scholar
  26. 26.
    Fateh, M.M.: On the voltage-based control of robot manipulators. Int. J. Control. Autom. 6(5), 702–712 (2008) Google Scholar
  27. 27.
    Fateh, M.M.: Robust fuzzy control of electrical manipulators. J. Intell. Robot. Syst. 60(3–4), 415–434 (2010) CrossRefMATHGoogle Scholar
  28. 28.
    Fateh, M.M.: Robust voltage control of electrical manipulators in task-space. Int. J. Innov. Comput. Inf. Control 6(6), 2691–2700 (2010) Google Scholar
  29. 29.
    Fateh, M.M.: Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dyn. 67, 1525–1537 (2012) MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Fateh, M.M.: Nonlinear control of electrical flexible-joint robots. Nonlinear Dyn. 67(4), 2549–2559 (2011) MathSciNetCrossRefGoogle Scholar
  31. 31.
    Fateh, M.M., Ahsani Tehrani, H., Karbassi, S.M.: Repetitive control of electrically driven robot manipulators. Int. J. Syst. Sci. 44(4), 775–785 (2013) CrossRefMATHGoogle Scholar
  32. 32.
    Fateh, M.M., Khorashadizadeh, S.: Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty. Nonlinear Dyn. 69(3), 1465–1477 (2012) MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Fateh, M.M., Khorashadizadeh, S.: Optimal robust voltage control of electrically driven robot manipulators. Nonlinear Dyn. 70(2), 1445–1458 (2012) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Fateh, M.M., Fateh, S.: Decentralized direct adaptive fuzzy control of robots using voltage control strategy. Nonlinear Dyn. 70(3), 1919–1930 (2012) MathSciNetCrossRefGoogle Scholar
  35. 35.
    Moreno-Valenzuela, J., Campa, R., Santibanez, V.: On passivity-based control of a class of electrically driven robots. In: IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, pp. 2756–2761 (2012) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Shahrood UniversityShahroodIran

Personalised recommendations