Skip to main content
Log in

Impedance control of robots using voltage control strategy

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Impedance control provides a unified solution for the position and force control of robot manipulators. The dynamic behavior of a robotic system in response to environment is prescribed by an impedance model formed as Thevenin model. This model is certain and linear while the robot manipulator is highly nonlinear, coupled, and uncertain. Therefore, impedance control must overcome nonlinearity, coupling, and uncertainty to convert the robotic system to the impedance model. To overcome these problems, this paper presents a novel impedance control for electrically driven robots, which is free from the manipulator dynamics. The novelty of this paper is the use of voltage control strategy to develop the impedance control. Compared with the commonly used impedance control, which is based on the torque control strategy, it is computationally simpler, more efficient, and robust. The mathematical verification and simulation results show the effectiveness of the control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Craig, J.J.: Introduction to Robotics. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  2. Raibert, M.H., Craig, J.J.: Hybrid position and force control of robot manipulators. J. Dyn. Syst. Meas. Control 102, 126–133 (1981)

    Article  Google Scholar 

  3. Khatib, O.: A unified approach for motion and force control of robot manipulators: the operation-space formulation. IEEE Trans. Robot. Autom. 3(1), 43–53 (1987)

    Article  Google Scholar 

  4. Hogan, N.: Impedance control: an approach to manipulator, Parts I, II, III. J. Dyn. Syst. Meas. Control 3, 1–24 (1985)

    Article  Google Scholar 

  5. Anderson, R., Spong, M.: Hybrid impedance control of robotic manipulators. IEEE Trans. Robot. Autom. 4(5), 549–555 (1988)

    Article  Google Scholar 

  6. Fateh, M.M., Alavi, S.S.: Impedance control of an active suspension system. Mechatronics 19, 134–140 (2009)

    Article  Google Scholar 

  7. Fateh, M.M.: Robust impedance control of a hydraulic suspension system. Int. J. Robust Nonlinear Control 20(8), 858–872 (2010)

    MathSciNet  Google Scholar 

  8. Fateh, M.M., Moradi Zirkohi, M.: Adaptive impedance control of a hydraulic suspension system using particle swarm optimization. Veh. Syst. Dyn. 49(12), 1951–1965 (2011)

    Article  Google Scholar 

  9. Akdogan, E., Arif Adli, M.: The design and control of a therapeutic exercise robot for lower limb rehabilitation physiotherabot. Mechatronics 21, 509–522 (2011)

    Article  Google Scholar 

  10. Hogan, N.: On the stability of manipulators performing contact tasks. IEEE J. Robot. Autom. 4, 677–686 (1988)

    Article  Google Scholar 

  11. Colgate, J.E., Hogan, N.: Robust control of dynamically interacting systems. Int. J. Control 48(1), 65–88 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T.: Robot aided neurorehabilitation. IEEE Trans. Rehabil. Eng. 6(1), 75–87 (1998)

    Article  Google Scholar 

  13. Richardson, R., Brown, M., Bhakta, M., Levesley, M.C.: Design and control of a three degree of freedom pneumatic physiotherapy robot. Robotica 21, 589–604 (2003)

    Article  Google Scholar 

  14. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modelling and Control. Wiley, New York (2006)

    Google Scholar 

  15. Natale, C.: Interaction Control of Robot Manipulators: Six-Degrees-of-Freedom Tasks. Springer Tracts in Advanced Robotics (STAR). Springer, New York (2003)

    Google Scholar 

  16. Zollo, L., Siciliano, B., Luca Guglielmelli, A.D.E., Dario, P.: Compliance control for an anthropomorphic robot with elastic joints: theory and experiments. J. Dyn. Syst. Meas. Control 127(3), 321–328 (2005)

    Article  Google Scholar 

  17. Albu-Schaffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2007)

    Article  Google Scholar 

  18. Ott, C., Albu-Schaffer, A., Kugi, A., Hirzinger, G.: On the passivity based impedance control of flexible joint robots. IEEE Trans. Robot. 24(2), 416–429 (2008)

    Article  Google Scholar 

  19. Colbaugh, R., Seraji, H., Glass, K.: Direct adaptive impedance control of robot manipulators. J. Robot. Syst. 10, 217–248 (1993)

    Article  MATH  Google Scholar 

  20. Chien, M.-C., Huang, A.-C.: Adaptive impedance controller design for flexible-joint electrically-driven robots without computation of the regressor matrix. Robotica 30(1), 133–144 (2012)

    Article  MathSciNet  Google Scholar 

  21. Kazerooni, H., Sheridan, T.B., Houpt, P.K.: Robust compliant motion for manipulators. Part 1: The fundamental concepts of compliant motion. IEEE J. Robot. Autom. 2(2), 83–92 (1986)

    Article  Google Scholar 

  22. Kazerooni, H., Sheridan, T.B., Houpt, P.K.: Robust compliant motion for manipulators. Part 2: Design method. IEEE J. Robot. Autom. 2(2), 93–105 (1986)

    Article  Google Scholar 

  23. Chan, S.P., Yao, B., Gao, W.B., Cheng, M.: Robust impedance control of robot manipulator. Int. J. Robot. Autom. 6(4), 220–227 (1991)

    Google Scholar 

  24. Jung, S., Hsia, T.C.: Neural network impedance force control of robot manipulator. IEEE Trans. Ind. Electron. 45(3), 451–461 (1998)

    Article  Google Scholar 

  25. Seul, J., Hsia, T.C.: Robust neural force control scheme under uncertainties in robot dynamics and unknown environment. IEEE Trans. Ind. Electron. 47, 403–412 (2000)

    Article  Google Scholar 

  26. Fateh, M.M.: On the voltage-based control of robot manipulators. Int. J. Control. Autom. 6(5), 702–712 (2008)

    Google Scholar 

  27. Fateh, M.M.: Robust fuzzy control of electrical manipulators. J. Intell. Robot. Syst. 60(3–4), 415–434 (2010)

    Article  MATH  Google Scholar 

  28. Fateh, M.M.: Robust voltage control of electrical manipulators in task-space. Int. J. Innov. Comput. Inf. Control 6(6), 2691–2700 (2010)

    Google Scholar 

  29. Fateh, M.M.: Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dyn. 67, 1525–1537 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fateh, M.M.: Nonlinear control of electrical flexible-joint robots. Nonlinear Dyn. 67(4), 2549–2559 (2011)

    Article  MathSciNet  Google Scholar 

  31. Fateh, M.M., Ahsani Tehrani, H., Karbassi, S.M.: Repetitive control of electrically driven robot manipulators. Int. J. Syst. Sci. 44(4), 775–785 (2013)

    Article  MATH  Google Scholar 

  32. Fateh, M.M., Khorashadizadeh, S.: Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty. Nonlinear Dyn. 69(3), 1465–1477 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fateh, M.M., Khorashadizadeh, S.: Optimal robust voltage control of electrically driven robot manipulators. Nonlinear Dyn. 70(2), 1445–1458 (2012)

    Article  MathSciNet  Google Scholar 

  34. Fateh, M.M., Fateh, S.: Decentralized direct adaptive fuzzy control of robots using voltage control strategy. Nonlinear Dyn. 70(3), 1919–1930 (2012)

    Article  MathSciNet  Google Scholar 

  35. Moreno-Valenzuela, J., Campa, R., Santibanez, V.: On passivity-based control of a class of electrically driven robots. In: IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, pp. 2756–2761 (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Fateh.

Appendix

Appendix

According to the modeling approach given by Spong in [14], the dynamic model of the SCARA robot in Fig. 4 is obtained as

$$\mathbf{D}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{g}(\mathbf{q}) + \mathbf{J}^{\mathbf{T}}(\mathbf{q})\mathbf{F}_{{e}} = \boldsymbol{\tau}_{{r}} $$

where

In the simulations, the arm which consists of the first three joints is used to perform the proposed impedance control. Thus,

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fateh, M.M., Babaghasabha, R. Impedance control of robots using voltage control strategy. Nonlinear Dyn 74, 277–286 (2013). https://doi.org/10.1007/s11071-013-0964-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0964-y

Keywords

Navigation