Advertisement

Nonlinear Dynamics

, Volume 72, Issue 4, pp 729–749 | Cite as

Adaptive synchronization design for uncertain chaotic systems in the presence of unknown system parameters: a revisit

  • Zhiyong Sun
  • Wenzhi Zhu
  • Gangquan Si
  • Yue Ge
  • Yanbin Zhang
Original Paper

Abstract

Recently the synchronization control for chaotic systems with unknown parameters has attracted great attention among the researchers and diverse synchronization schemes have been reported in the literature. In this review article, we carefully revisit several recent articles published from 2010 to the present and find that several reported schemes are problematic. The imperfect synchronization schemes are categorized into five cases according to their defect types. By providing a general theorem for the adaptive synchronization design, we further present modified schemes to correct the defects in these articles. In addition, we have emphasized the significant linear independence condition for ensuring successful identification, as this condition has been neglected in several previous articles. We also summarize three cases when this condition is not valid, and accordingly four approaches are proposed to guarantee the successful parameter estimation for uncertain chaotic systems.

Keywords

Adaptive synchronization Parameter identification Uncertain chaotic system Linear independence condition 

References

  1. 1.
    Parlitz, U.: Estimating model parameters from time series by autosynchronization. Phys. Rev. Lett. 76(8), 1232–1235 (1996) CrossRefGoogle Scholar
  2. 2.
    Wang, Y., Guan, Z.-H., Wen, X.: Adaptive synchronization for Chen chaotic system with fully unknown parameters. Chaos Solitons Fractals 19(4), 899–903 (2004) MATHCrossRefGoogle Scholar
  3. 3.
    Chen, S., Hu, J., Wang, C., Lü, J.: Adaptive synchronization of uncertain Rössler hyperchaotic system based on parameter identification. Phys. Lett. A 321(1), 50–55 (2004) MATHCrossRefGoogle Scholar
  4. 4.
    Adloo, H., Roopaei, M.: Review article on adaptive synchronization of chaotic systems with unknown parameters. Nonlinear Dyn. 65(1), 141–159 (2011) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Zhao, J., Ren, T.: Q–S synchronization between chaotic systems with double scaling functions. Nonlinear Dyn. 62(3), 665–672 (2010) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Zheng, S., Dong, G., Bi, Q.: Adaptive modified function projective synchronization of hyperchaotic systems with unknown parameters. Commun. Nonlinear Sci. Numer. Simul. 15(11), 3547–3556 (2010) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Wu, X., Li, S.: Dynamics analysis and hybrid function projective synchronization of a new chaotic system. Nonlinear Dyn. 69(4), 1979–1994 (2012) CrossRefGoogle Scholar
  8. 8.
    Yang, C.C.: Adaptive synchronization of Lü hyperchaotic system with uncertain parameters based on single-input controller. Nonlinear Dyn. 63(3), 447–454 (2011) CrossRefGoogle Scholar
  9. 9.
    Yang, C.-C.: Exponential synchronization of a new Lorenz-like attractor with uncertain parameters via single input. Appl. Math. Comput. 217(14), 6490–6497 (2011) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Wang, X.Y., Sun, P.: Multi-switching synchronization of chaotic system with adaptive controllers and unknown parameters. Nonlinear Dyn. 63(4), 599–609 (2011) CrossRefGoogle Scholar
  11. 11.
    Wu, X.J., Lu, H.T.: Generalized projective lag synchronization between different hyperchaotic systems with uncertain parameters. Nonlinear Dyn. 66(1), 185–200 (2011) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wu, X.J., Lu, H.T.: Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters. Chaos Solitons Fractals 44(10), 802–810 (2011) CrossRefGoogle Scholar
  13. 13.
    Li, S.Y., Ge, Z.M.: Pragmatical adaptive synchronization of different orders chaotic systems with all uncertain parameters via nonlinear control. Nonlinear Dyn. 64(1), 77–87 (2011) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ma, H., Xu, B., Lin, W., Feng, J.: Adaptive identification of time delays in nonlinear dynamical models. Phys. Rev. E 82(6), 066210 (2010) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sorrentino, F., DeLellis, P.: Estimation of communication-delays through adaptive synchronization of chaos. Chaos Solitons Fractals 45(1), 35–46 (2012) CrossRefGoogle Scholar
  16. 16.
    Bowong, S., Kurths, J.: Parameter estimation based synchronization for an epidemic model with application to tuberculosis in Cameroon. Phys. Lett. A 374(44), 4496–4505 (2010) MATHCrossRefGoogle Scholar
  17. 17.
    Nguyen, L.H., Hong, K.-S.: Adaptive synchronization of two coupled chaotic Hindmarsh–Rose neurons by controlling the membrane potential of a slave neuron. Appl. Math. Model. 37(4), 2460–2468 (2013) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Illing, L., Saunders, A.M., Hahs, D.: Multi-parameter identification from scalar time series generated by a Malkus–Lorenz water wheel. Chaos 22(1), 013127 (2012) CrossRefGoogle Scholar
  19. 19.
    Cai, J.: Comment on “Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters”. Commun. Nonlinear Sci. Numer. Simul. 15(2), 469 (2010) CrossRefGoogle Scholar
  20. 20.
    Li, H.-Y., Hu, Y.-A., Mi, Y.-L., Zhu, M.: Comments and modifications on: “Pragmatical adaptive synchronization of different orders chaotic systems with all uncertain parameters via nonlinear control”. Nonlinear Dyn. 69(3), 1489–1491 (2012) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Sun, Z., Si, G.: Comment on: “Topology identification and adaptive synchronization of uncertain complex networks with adaptive double scaling functions” [Commun. Nonlinear Sci. Numer. Simul. 2011;16:3337–43]. Commun. Nonlinear Sci. Numer. Simul. 17(8), 3461–3463 (2012) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Sun, F., Peng, H., Luo, Q., Li, L., Yang, Y.: Parameter identification and projective synchronization between different chaotic systems. Chaos 19(2), 023109 (2009) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Peng, H., Li, L., Yang, Y., Sun, F.: Conditions of parameter identification from time series. Phys. Rev. E 83(3), 036202 (2011) CrossRefGoogle Scholar
  24. 24.
    Sun, Z., Si, G., Min, F., Zhang, Y.: Adaptive modified function projective synchronization and parameter identification of uncertain hyperchaotic (chaotic) systems with identical or non-identical structures. Nonlinear Dyn. 68(4), 471–486 (2012) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Lin, W., Ma, H.F.: Failure of parameter identification based on adaptive synchronization techniques. Phys. Rev. E 75(6), 066212 (2007) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sun, F., Peng, H., Xiao, J., Yang, Y.: Identifying topology of synchronous networks by analyzing their transient processes. Nonlinear Dyn. 67(2), 1457–1466 (2012) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhao, J., Zhang, K.: A general scheme for Q–S synchronization of chaotic systems with unknown parameters and scaling functions. Appl. Math. Comput. 216(7), 2050–2057 (2010) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Wang, Z.L.: Projective synchronization of hyperchaotic Lü system and Liu system. Nonlinear Dyn. 59(3), 455–462 (2010) MATHCrossRefGoogle Scholar
  29. 29.
    Xu, Y., Zhou, W., Fang, J.A., Sun, W.: Adaptive synchronization of uncertain chaotic systems with adaptive scaling function. J. Frankl. Inst.-Eng. Appl. Math. 348(9), 2406–2416 (2011) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    El-Dessoky, M., Yassen, M., Saleh, E.: Adaptive modified function projective synchronization between two different hyperchaotic dynamical systems. Math. Probl. Eng. (2012). doi: 10.1155/2012/810626 MathSciNetGoogle Scholar
  31. 31.
    Bai, J., Yu, Y., Wang, S., Song, Y.: Modified projective synchronization of uncertain fractional order hyperchaotic systems. Commun. Nonlinear Sci. Numer. Simul. 17(4), 1921–1928 (2012) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Chen, L., Lu, J., Tse, C.K.: Synchronization: an obstacle to identification of network topology. IEEE Trans. Circuits Syst. II, Express Briefs 56(4), 310–314 (2009) CrossRefGoogle Scholar
  33. 33.
    Al-Sawalha, M.M., Noorani, M.: Adaptive reduced-order anti-synchronization of chaotic systems with fully unknown parameters. Commun. Nonlinear Sci. Numer. Simul. 15(10), 3022–3034 (2010) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Miao, Q., Tang, Y., Lu, S., Fang, J.: Lag synchronization of a class of chaotic systems with unknown parameters. Nonlinear Dyn. 57(1), 107–112 (2009) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Mossa Al-sawalha, M., Noorani, M., Al-dlalah, M.: Adaptive anti-synchronization of chaotic systems with fully unknown parameters. Comput. Math. Appl. 59(10), 3234–3244 (2010) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Wang, Z.L., Shi, X.R.: Adaptive Q–S synchronization of non-identical chaotic systems with unknown parameters. Nonlinear Dyn. 59(4), 559–567 (2010) MATHCrossRefGoogle Scholar
  37. 37.
    Li, X.F., Leung, A.C.S., Han, X.P., Liu, X.J., Chu, Y.D.: Complete (anti-)synchronization of chaotic systems with fully uncertain parameters by adaptive control. Nonlinear Dyn. 63(1), 263–275 (2011) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Mossa Al-sawalha, M., Noorani, M.S.M.: Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters. Commun. Nonlinear Sci. Numer. Simul. 17(4), 1908–1920 (2012) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Wang, Z.: Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2366–2372 (2009) CrossRefGoogle Scholar
  40. 40.
    Li, Z., Zhao, X.: The parametric synchronization scheme of chaotic system. Commun. Nonlinear Sci. Numer. Simul. 16(7), 2936–2944 (2011) MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Li, S.Y., Yang, C.H., Lin, C.T., Ko, L.W., Chiu, T.T.: Adaptive synchronization of chaotic systems with unknown parameters via new backstepping strategy. Nonlinear Dyn. 70(3), 2129–2143 (2012) MathSciNetCrossRefGoogle Scholar
  42. 42.
    Ioannou, P.A., Sun, J.: Robust Adaptive Control. Prentice-Hall, Upper Saddle River (1996) MATHGoogle Scholar
  43. 43.
    Al-Sawalha, M.M., Noorani, M.: Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters. Commun. Nonlinear Sci. Numer. Simul. 15(4), 1036–1047 (2010) MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Anderson, B.D.O.: Adaptive systems, lack of persistency of excitation and bursting phenomena. Automatica 21(3), 247–258 (1985) MATHCrossRefGoogle Scholar
  45. 45.
    Wu, X.J.: A new chaotic communication scheme based on adaptive synchronization. Chaos 16(4), 043118 (2006) MathSciNetCrossRefGoogle Scholar
  46. 46.
    Yu, W., Cao, J., Wong, K.W., Lü, J.: New communication schemes based on adaptive synchronization. Chaos 17(3), 033114 (2007) MathSciNetCrossRefGoogle Scholar
  47. 47.
    Liu, Y., Tang, W.K.S.: Cryptanalysis of a chaotic communication scheme using adaptive observer. Chaos 18(4), 043110 (2008) MathSciNetCrossRefGoogle Scholar
  48. 48.
    Liu, Y., Mao, Y., Tang, W.K.S., Kocarev, L.: Cryptanalysis of chaotic communication schemes by dynamical minimization algorithm. Int. J. Bifurc. Chaos 19(7), 2429–2437 (2009) MATHCrossRefGoogle Scholar
  49. 49.
    Dedieu, H., Ogorzalek, M.: Identifiability and identification of chaotic systems based on adaptive synchronization. IEEE Trans. Circuits Syst. I 44(10), 948–962 (1997) MathSciNetCrossRefGoogle Scholar
  50. 50.
    Liu, H., Lu, J.-A., Lü, J., Hill, D.J.: Structure identification of uncertain general complex dynamical networks with time delay. Automatica 45(8), 1799–1807 (2009) MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Ma, H.-f., Lin, W.: Nonlinear adaptive synchronization rule for identification of a large amount of parameters in dynamical models. Phys. Lett. A 374(2), 161–168 (2009) MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Peng, H., Li, L., Sun, F., Yang, Y., Li, X.: Parameter identification and synchronization of dynamical system by introducing an auxiliary subsystem. Adv. Differ. Equ. 2010, 808403 (2010) MathSciNetCrossRefGoogle Scholar
  53. 53.
    Uçar, A., Lonngren, K.E., Bai, E.W.: Multi-switching synchronization of chaotic systems with active controllers. Chaos Solitons Fractals 38(1), 254–262 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Zhiyong Sun
    • 1
    • 2
  • Wenzhi Zhu
    • 1
  • Gangquan Si
    • 1
  • Yue Ge
    • 1
    • 3
  • Yanbin Zhang
    • 1
  1. 1.State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.Shandong Provincial Key Laboratory of Computer NetworkShandong Computer Science CenterJinanChina
  3. 3.AVIC Aircraft Strength Research InstituteXi’anChina

Personalised recommendations