Natural Hazards

, Volume 86, Issue 3, pp 1363–1376 | Cite as

Groundwater overexploitation and soil subsidence monitoring on Recife plain (Brazil)

  • Rejane Maria Rodrigues de Luna
  • Silvio Jacks dos Anjos Garnés
  • Jaime Joaquim da Silva Pereira Cabral
  • Sylvana Melo dos Santos
Original Paper

Abstract

The city of Recife, in the northeast of Brazil, is formed by a coastal plain, which is surrounded by several hills, the Atlantic ocean and a number of rivers that cross the city. The plain was formed by fluviomarine sediment, which was produced by marine transgressions and regressions. Its hydrogeological characteristics and geographical position, located slightly above sea level, lead to water-related problems, such as coastal erosion and frequent flooding. In the last 50 years, an increase in the exploitation of groundwater has caused a lowering of the piezometric surface (up to 100 m at certain points). In porous sedimentary aquifers, pumping fluid decreases pore pressure and reduces the support provided by the overlying layers of soil. This reduction in pressure is caused by the lowering of the piezometric surface and leads to soil deformation, usually called subsidence. As a result of the excessive exploitation of groundwater in Recife, and the consequent decrease in groundwater levels, soil subsidence has become a great concern and requires careful investigation. Geodesic methods of monitoring and quantifying the vertical deformation of soil, caused by the removal of groundwater, have been used around the world. The present study describes a method of assessing the occurrence of soil subsidence in an area where excessive exploitation of groundwater has taken place. High-precision geometric leveling was used to quantify the phenomenon and to perform comparative analysis of altitude values from the year 1958 with more recent altitude values (from 2012 and 2015). The experiments confirmed a difference of 3.86 cm for one of the reference levels, located within the subsidence monitoring area. Thus, the leveling analysis provided estimates of a vertical displacement of approximately 0.68 mm/year in this area.

Keywords

Overexploitation of groundwater Geometric leveling Subsidence Potentiometric surface 

Notes

Acknowledgements

The authors would like to thank Funding Authority for Studies and Projects (Portuguese: Financiadora de Estudos e ProjetosFINEP) of Ministry of Science and Technology; National Counsel of Technological and Scientific Development (Portuguese: Conselho Nacional de Desenvolvimento Científico e TecnológicoCNPq); and Brazilian Federal Agency for Support and Evaluation of Graduate Education (Portuguese: Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCAPES) for providing the financial resources for the field activities; LAGEO (Laboratory of Geodesy) of UFPE, for the provision of the equipment needed to perform the field activities; Water Resources Group (Portuguese: Grupo de Recursos Hídricos—GRH) of UFPE and the Brazilian Institute of Geography and Statistics (Portuguese: Instituto Brasileiro de Geografia e EstatísticaIBGE), for the provision of data. The first author would also like to thank the Federal Institute of Education, Science, and Technology of Pernambuco (Portuguese: Instituto Federal de Educação, Ciência e Tecnologia de PernambucoIFPE) for permission to participate in this research.

References

  1. Bakr M (2015) Influence of groundwater management on land subsidence in deltas a case study of Jakarta (Indonesia). Water Resour Manag 29:1541–1555CrossRefGoogle Scholar
  2. Cabral JJSP, Montenegro SMGL (2004) Capítulo 5—Considerações sobre a salinização dos aqüíferos costeiros na planície de Recife (English: Chapter 5—Consideration about coastal aquifer salinization in Recife plain). In: Água Subterrânea: Aqüíferos Costeiros e Aluviões, Vulnerabilidade e Aproveitamento. Editora Universitária da UFPE. Pernambuco, BrasilGoogle Scholar
  3. Cabral JJSP, Pontes Filho IDS, Santos SM (2006) Bombeamento intensivo de água subterrânea e riscos de subsidência do solo (English: Intensive groundwater pumping and soil subsidence risk). Revista Brasileira de Recursos Hídricos 11:147–157CrossRefGoogle Scholar
  4. Cabral JJSP, Farias VP, Sobral MC, Paiva ALR, Santos RB (2008) Groundwater management in Recife. Water Int 33(1):86–99CrossRefGoogle Scholar
  5. Compesa (2015) Relatório (Report). Sent by e-mail from Groundwater Coordination of COMPESAGoogle Scholar
  6. Costa WD, Costa Filho WD (2004) A Gestão dos aqüíferos costeiros de Pernambuco (English: Management of coastal aquifer of Pernambuco). In: Proceedings of XIII Congresso Brasileiro de Águas subterrâneas. São Paulo, SPGoogle Scholar
  7. Costa WD, Manoel Filho J, Santos AC, Costa Filho WD, Monteiro AB, Sousa FJA (1998) Zoneamento de explotação das águas subterrâneas na cidade do Recife-PE (English: Groundwater exploitation zoning in Recife—PE). In: Proceedings of X Congresso Brasileiro de Águas Subterrâneas. São Paulo, SPGoogle Scholar
  8. Costa WD, Costa Filho WD, Costa HF, Ferreira CA, Morais JFS, Vila Verde ER, Costa LB (2002) Estudo Hidrogeológico de Recife, Olinda, Camaragibe e Jaboatão dos Guararapes—HIDROREC II (English: Hydrologic study of Recife, Olinda, Camaragibe and Jaboatão dos Guararapes). Secretaria de Recursos Hídricos do Estado de PernambucoGoogle Scholar
  9. Farrapeira CMR, Melo AVOM, Barbosa DF, Silva KME (2007) Ship hull fouling in the Port of Recife, Pernambuco. Braz J Oceanogr 55(3):207–221CrossRefGoogle Scholar
  10. Galloway DL, Burbey TJ (2011) Review: regional land subsidence accompanying groundwater extraction. Hydrogeol J 19:1459–1486CrossRefGoogle Scholar
  11. Garnés SJA (2016a) Detalhamento dos modelos da realidade espacial da Região Metropolitana de Recife pelo refinamento dos elementos geodésicos: desvio da vertical, geoide local, velocidade de placa tectônica e modelo digital de terreno (English: Detailing of spatial reality model of Recife Metropolitan Region trough geodetic elements refining: vertical deviation, local geoid, tectonics speed and digital elevation model). Relatório Técnico Final (Final Technical Report). CNPq. Processo 487489/2012-8Google Scholar
  12. Garnés SJA (2016b) Módulo: nivelamentogeométrico @ versão 2016.03.18. Software. Departamento de Engenharia Cartográfica, Federal University of PernambucoGoogle Scholar
  13. Gemael C (1999) Introdução à Geodésia Física (English: Introduction to physical geodesy), vol 1a. Editora da Universidade Federal do ParanáGoogle Scholar
  14. Guo H, Zhang Z, Cheng G, Li W, Li T, Jiao JJ (2015) Groundwater-derived land subsidence in the North China Plain. Environ Earth Sci 74:1415–1427CrossRefGoogle Scholar
  15. Huang B, Shu L, Yang YS (2012) Groundwater overexploitation causing land subsidence: hazard risk assessment using field observation and spatial modelling. Water Resour Manag 26:4225–4239CrossRefGoogle Scholar
  16. Huang Y, Yang Y, Li J (2015) Numerical simulation of artificial groundwater recharge for controlling land subsidence. KSCE J Civil Eng 19(2):418–426CrossRefGoogle Scholar
  17. IBGE (2011) Ajustamento simultâneo da rede altimétrica de alta precisão do Sistema Geodésico Brasileiro (Simultaneous adjustment of Altimetric Network of High Precision of Brazilian Geodetic System). Relatório (Report). Rio de Janeiro, RJGoogle Scholar
  18. IBGE (2016) Banco de Dados Geodésicos (Database Geodetic). http://www.ibge.gov.br/home/geociencias/geodesia/bdgpesq_googlemaps.php. Consulted on 15 Oct 2016
  19. Mingnorance F (2000) Manifestaciones de subsidencia superficial en el Pastal, Norte de Mendoza, Argentina (English: Superficial subsidence occurrence in El Pastal, North of Mendonza, Argentina). Revista de la Facultad de Ingeniería 41:5–16Google Scholar
  20. Montenegro SMGL, Montenegro AAA, Cabral JJSP, Cavalcanti G (2006) Intensive exploitation and groundwater salinity in Recife coastal plain (Brazil): monitoring and management perspectives. In: Proceedings 1st SWIM-SWICA joint saltwater intrusion conference, Cagliari-Chia Laguna, Italy. 24–29 Sept 2006, pp 79–86Google Scholar
  21. Montenegro SMGL, Cabral JJSP, Paiva ALR (2009) Águas Subterrâneas na Zona Costeira da Planície do Recife (PE): Evolução da Salinização e Perspectivas de Gerenciamento (English: Groundwater in the coastal zone of the Recife Plain: evolution of the salinization and management perspectives). Revista Brasileira de Recursos Hídricos 14(3):81–93CrossRefGoogle Scholar
  22. Santos SM (2005) Investigações Metodológicas sobre o Monitoramento da Subsidência do Solo devido à Extração de Água Subterrânea—Caso da Região Metropolitana de Recife (English: Methodological investigations about landsubsidence due to groundwater exploitation—case of Metropolitan Region of Recife). Thesis of Doctorate. Federal University of PernambucoGoogle Scholar
  23. Santos SM, Cabral JJSP, Pontes Filho IDS (2012) Monitoring of soil subsidence in urban and coastal areas due to groundwater overexploitation using GPS. Nat Hazards 64:421–439CrossRefGoogle Scholar
  24. Silva DJN (2014) Avaliação da precisão de trechos da rede altimétrica de alta precisão do sistema geodésico brasileiro na cidade do Recife-PE (English: Evaluation of parts of Altimetric Network of high precision of Brazilian Geodetic System in Recife-PE). Monograph. Federal University of PernambucoGoogle Scholar
  25. Xu YS, Ma L, Shen SL, Du YJ (2012) Analysis of urbanization-induced land subsidence in Shanghai. Nat Hazards 63:1255–1267CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Rejane Maria Rodrigues de Luna
    • 1
  • Silvio Jacks dos Anjos Garnés
    • 2
  • Jaime Joaquim da Silva Pereira Cabral
    • 1
  • Sylvana Melo dos Santos
    • 3
  1. 1.Postgraduate Course in Civil Engineering, Federal University of PernambucoRecifeBrazil
  2. 2.Department of Cartographic Engineering, Federal University of PernambucoRecifeBrazil
  3. 3.Department of Civil and Environmental Engineering, Federal University of PernambucoRecifeBrazil

Personalised recommendations