Skip to main content

Advertisement

Log in

Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The goal of our study was to investigate the potential benefits of reinforcing polymer matrices with nanoobjects for structural applications by looking at both the mechanical properties and environmental impacts. For determining the mechanical properties, we applied the material indices defined by Ashby for stiffness and strength. For the calculation of environmental impacts, we applied the life cycle assessment methodology, focusing on non-renewable energy use (NREU). NREU has shown to be a good indicator also for other environmental impacts. We then divided the NREU by the appropriate Ashby index to obtain the ‘functionality-based NREU’. We studied 23 different nanocomposites, based on thermoplastic and thermosetting polymer matrices and organophilic montmorillonite, silica, carbon nanotubes (single-walled and multiwalled) and calcium carbonate as filler. For 17 of these, we saw a decrease of the functionality-based NREU with increasing filler content. We draw the conclusion that the use of nanoobjects as filler can have benefits from both an environmental point of view and with respect to mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Although not all municipal waste incinerators use combined heat and power generation, we assume this type as average values for Europe.

  2. Apart from strength and stiffness, other important mechanical properties could be barrier properties and UV resistance. We limit ourselves to strength and stiffness because these properties are important for most applications of nanocomposites. Barrier properties are primarily important for packaging materials, while UV resistance is particularly needed for outdoor applications.

  3. Impact on climate change is defined as the Global Warming Potential in the next 100 years (GWP100). The methodology is described by the Intergovernmental Panel on Climate Change (IPCC 2007).

  4. Also for pyrogenic silica natural gas is consumed. It is used for heating hydrogen gas and combustion air, for the evaporation of silicon tetrachloride, as well as for removing residual hydrochloride from the silica surface.

  5. Included processes are fluidized bed and floating catalyst chemical vapor deposition, high-pressure carbon monoxide process, electric arc process, laser ablation process, and solar furnace process.

  6. The slope of this line is negative, albeit minor.

  7. The amount of polymer matrix decreases with increasing filler content. Therefore, the contribution of the polymer matrix to the total environmental impacts and thus to the functionality-based NREU decreases with increasing filler content. It therefore contributes to a negative slope of the line.

  8. Best cases (% improvement of functionality-based NREU per % increase in filler): Ep-Si (3.4%/%), TPS-MMT (3.5%/%), HDPE-MMT (3.6%/%), EPDM-SWNT (5.4%/%) and LDPE-MMT (5.7%/%).

References

  • Ahmadi SJ, Huang YD, Li W (2004) Synthetic routes, properties and future applications of polymer-layered silicate nanocomposites. J Mater Sci 39(6):1919–1925

    Article  CAS  ADS  Google Scholar 

  • Arroyo M, López-Manchado MA, Herrero B (2003) Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer 44(8):2447–2453. doi:10.1016/S0032-3861(03)00090-9

    Article  CAS  Google Scholar 

  • Ashby MF (2005) Materials selection in mechanical design, 3rd edn. Elsevier Butterworth-Heinemann, Burlington

    Google Scholar 

  • Avella M, de Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474. doi:10.1016/j.foodchem.2004.10.024

    Article  CAS  Google Scholar 

  • Chavarria F, Paul DR (2004) Comparison of nanocomposites based on nylon 6 and nylon 66. Polymer 45(25):8501–8515. doi:10.1016/j.polymer.2004.09.074

    Article  CAS  Google Scholar 

  • Chavarria F, Paul DR (2006) Morphology and properties of thermoplastic polyurethane nanocomposites: effect of organoclay structure. Polymer 47(22):7760–7773. doi:10.1016/j.polymer.2006.08.067

    Article  CAS  Google Scholar 

  • Drown EK, Mohanty AK, Parulekar Y, Hasija D, Harte BR, Misra M, Kurian JV (2007) The surface characteristics of organoclays and their effect on the properties of poly(trimethylene terephthalate) nanocomposites. Compos Sci Technol 67(15–16):3168–3175. doi:10.1016/j.compscitech.2007.04.011

    Article  CAS  Google Scholar 

  • Ecoinvent (2009) Ecoinvent database. Available online at www.ecoinvent.ch

  • Energy Efficiency Enquiries Bureau ETSU (1993) Guide 31, the moulding of thermo-plastic containers by the extrusion-blow moulding process. Harwell, Oxfordshire, p 11

  • European Commission (2007) Integrated pollution prevention and control (IPPC). Reference document on best available techniques for the manufacture of large volume inorganic chemicals—solids and others industry, Chap. 5, Synthetic amorphous silica. Available online at http://eippcb.jrc.ec.europa.eu/pages/FActivities.htm

  • Freudenstein M (2007) Low-density polyethylene (PE-LD/LLD). Kunststoffe international, vol 97, Carl Hanser Verlag, München. www.kunststoffe-international.com

  • Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Hischier R, Hellweg S, Humbert S, Margni M, Nemecek T, Spielmann M (2004) Implementation of life cycle impact assessment methods. Ecoinvent report no. 3, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland

  • Halimi C, Gerard JF (2008) Etude du nanocomposite polyacide lactique/silice. Projet de Fin d’etudes, année scolaire 2007–2008. Institute National des Sciences Appliquées de Lyon

  • Healy ML, Dahlben LJ, Isaacs JA (2008) Environmental assessment of single-walled carbon nanotube processes. J Ind Ecol 12(3):376–393. doi:10.1111/j.1530-9290.2008.00058.x

    Article  CAS  Google Scholar 

  • Hischier R (2004) Life cycle inventories of packagings and graphical papers. Ecoinvent report no. 11, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland. Online version at www.ecoinvent.ch

  • Hotta S, Paul DR (2004) Nanocomposites formed from linear lo density polyethylene and organoclays. Polymer 45(22):7639–7654. doi:10.1016/j.polymer.2004.08.059

    Article  CAS  Google Scholar 

  • Huijbrechts MAJ, Rombouts LJA, Hellweg S, Frischknecht R, Hendriks AJ, van de Meent D, Ragas AMJ, Reijnders L (2006) Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ Sci Technol 40(3):641–648. doi:10.1021/es051689q

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007. IPCC fourth assessment report. The physical science basis. Cambridge University Press, New York. Available online at http://www.ipcc.ch/ipccreports/ar4-wg1.htm

  • International Standards Organization (2000) Environmental management—life cycle assessment—examples of application of ISO 14041 to goal and scope definition and inventory analysis. ISO/TR 14049:2000(E)

  • International Standards Organisation (2006a) Environmental management—life cycle assessment—principles and framework. ISO/FDIS 14040:2006(E). Downloadable from www.iso.org

  • International Standards Organisation (2006b) Environmental management—Life cycle assessment—requirements and guidelines. ISO/FDIS 14044:2006(E). Downloadable from www.iso.org

  • Jiang L, Zhang J, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48(26):7632–7644. doi:10.1016/j.polymer.2007.11.001

    Article  CAS  Google Scholar 

  • Joshi S (2008) Can nanotechnology improve the sustainability of biobased products? The case of layered silicate biopolymer nanocomposites. J Ind Ecol 12(3):474–489. doi:10.111/j.1530-9290.2008.00039.x

    Article  CAS  Google Scholar 

  • Kirk-Othmer (1998) Encyclopedia of chemical technology, 4th edn. Wiley, New York

  • Kushnir D, Sandén BA (2008) Energy requirements of carbon nanoparticle production. J Ind Ecol 12(3):360–375. doi:10.1111/j.1530-9290.2008.00057.x

    Article  CAS  Google Scholar 

  • Lee W-J, Lee S-E, Kim C-G (2006) The mechanical properties of MWNT/PMMA nanocomposites fabricated by modified injection molding. Compos Struct 76(4):406–410. doi:10.1016/j.compstruct.2005.11.008

    Article  Google Scholar 

  • Luduena LN, Alvarez VA, Vazquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A 460–461:121–129. doi:10.1016/j.msea.2007.01.104

    Google Scholar 

  • Malucelli G, Ronchetti S, Lak N, Priola A, Tzankova NT, La Mantia FP (2007) Intercalation effects in LDPE/o-montmorillonites nanocomposites. Eur Polym J 43(2):328–335. doi:10.1016/j.eurpolymj.2006.11.024

    Article  CAS  Google Scholar 

  • Matĕjka L, Dukh O, Kolařík J (2000) Reinforcement of crosslinked rubbery epoxies by in-situ formed silica. Polymer 41(4):1449–1459. doi:10.1016/S0032-3861(99)00317-1

    Article  Google Scholar 

  • Matweb (2008). Matweb—material property data. Available online at www.Matweb.com. Accessed 17 Jan 2008

  • Morawiec J, Pawlak A, Slouf M, Galeski A, Piorkowska E, Krasnikowa N (2005) Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites. Eur Polym J 41(5):1115–1122. doi:10.1016/j.eurpolymj.2004.11.011

    Article  CAS  Google Scholar 

  • Nanocor (2008) Nanoclay structures. Available online at http://www.nanocor.com/nano_struct.asp. Accessed 5 Aug 2008

  • Nayak RR, Lee KY, Shanmugharaj AM, Ryu SH (2007) Synthesis and characterization of styrene grafted carbon nanotube and its polystyrene nanocomposite. Eur Polym J 43(12):4916–4923. doi:10.1016/j.eurpolymj.2007.04.012

    Article  CAS  Google Scholar 

  • Patterson RE (1998) Silica (introduction). In: Kirk-Othmer, Encyclopedia of chemical technology, 4th edn. Wiley, New York

  • Pietrini M, Roes AL, Patel MK, Chiellini E (2007) Comparative life cycle studies on poly(3-hydroxybutyrate)-based composites as potential replacement for conventional petrochemical plastics. Biomacromolecules 8(7):2210–2218. doi:10.1021/bm0700892S1525-7797(07)00089-X

    Article  CAS  PubMed  Google Scholar 

  • PlasticsEurope (2009) PlasticsEurope ecoprofiles. Available online at www.plasticseurope.org

  • PRé Consultants (2006) SimaPro 7, Multi User 7.0.1

  • Qiu W, Mai K, Zeng H (1999) Effect of macromolecular coupling agent on the property of PP/GF composites. J Appl Polym Sci 71(10):1537–1542. doi:10.1002/(SICI)1097-4628(19990307)71:10<1537:AID-APP1>3.0.CO;2-E

    Article  CAS  Google Scholar 

  • Reimann DO (2006) CEWEP energy report—status 2001–2004: results of specific data for energy, efficiency rates and coefficients, Plant efficiency factors and NCV of 97 European W-t-E plants and determination of the main energy results, CEWEP, Bamberg, Germany, October 2005, update July 2006. Available online at http://www.cewep.com/storage/med/media/statements/106_11_07_06_CEWP-Report_Final_Version.pdf?fCMS=9492359815c9d578a7fbb6af355da3b9

  • Rezanejad S, Mehrdad K (2007) Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur Polym J 43(7):2856–2865. doi:10.1016/j.eurpolymj.2007.04.031

    Article  CAS  Google Scholar 

  • Roes AL, Marsili E, Nieuwlaar E, Patel MK (2007) Environmental and cost assessment of a polypropylene nanocomposite. J Polym Env 15(3):212–226. doi:10.1007/s10924-007-0064-5

    Article  CAS  Google Scholar 

  • Shen L, Haufe J, Patel MK. Emerging bio-based plastics: product overview and market projection. Group Science, Technology and Society (STS), Copernicus Institute for Sustainable Development and Innovation, Utrecht University (forthcoming)

  • Svoboda P, Zeng C, Wang H, Lee LJ, Tomasko DL (2002) Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J Appl Polym Sci 85(7):1562–1570. doi:10.1002/app.10789

    Article  CAS  Google Scholar 

  • Tjong SC, Bao SP (2007) Fracture toughness of high density polyethylene/SEBS-g-MA/montmorillonite nanocomposites. Comp Sci Technol 67(2):314–323. doi:10.1016/j.compscitech.2006.08.006

    Article  CAS  Google Scholar 

  • Ullmann’s (2007) Encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA

  • Wan C, Qiao X, Zhang Y, Zhang Y (2003) Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym Test 22(4):453–461. doi:10.1016/S0142-9418(02)00126-5

    Article  CAS  Google Scholar 

  • Wang Y, Gao J, Ma Y, Agarwal US (2006) Study on mechanical properties, thermalstability and crystallization behavior of PET/MMT nanocomposites. Compos Part B 37(6):399–407. doi:10.1016/j.compositesb.2006.02.014

    Article  Google Scholar 

  • West RD, Malhotra VM (2006) Rupture of nanoparticle agglomerates and formulation of Al2O3-epoxy nanocomposites using ultrasonic cavitation approach: effects on the structural and mechanical properties. Polym Eng Sci 46(4):426–430. doi:10.1002/pen.20513

    Article  CAS  Google Scholar 

  • Wikipedia (2007) The free encyclopedia. Available online at http://en.wikipedia.org

  • Yoon PJ, Hunter DL, Paul DR (2003) Polycarbonate nanocomposites: part 2. Degradation and color formation. Polymer 44(18):5341–5354. doi:10.1016/S0032-3861(03)00523-8

    Article  CAS  Google Scholar 

  • Zhang J, Jiang DD, Wilkie CA (2005a) Polyethylene and polypropylene nanocomposites based upon an oligomerically modified clay. Thermochim Acta 430(1–2):107–113. doi:10.1016/j.tca.2005.01.028

    Article  CAS  Google Scholar 

  • Zhang L, Chen X, Li C (2005b) Mechanical properties of PVC/nano-CaCO3 composites. J Mater Sci 40(8):2097–2098. doi:10.1007/s10853-005-1244-0

    Article  CAS  ADS  Google Scholar 

  • Zhang J, Jiang DD, Wilkie CA (2006a) Polyethylene and polypropylene nanocomposites based on a three component oligomerically modified clay. Polym Degrad Stabil 91(4):641–648. doi:10.1016/j.polymdegradstab.2005.02.004

    Article  CAS  Google Scholar 

  • Zhang J, Jiang DD, Wilkie CA (2006b) Thermal and flame properties of polyethylene and polypropylene nanocomposites based on an oligomerically-modified clay. Polym Degrad Stabil 91(2):298–304. doi:10.1016/j.polymdegradstab.2005.05.006

    Article  CAS  Google Scholar 

  • Zhang X, Lin G, Abou-Hussein R, Hassan MK, Noda I, Mark JE (2007) Some novel layered-silicate nanocomposites based on a biodegradable hydroxybutyrate copolymer. Eur Polym J 43(8):3128–3135. doi:10.1016/j.eurpolymj.2007.04.043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by the EU-Network of Excellence NANOFUN-POLY “Nanostructured and Functional Polymer-based Materials and Nanocomposites” (www.nanofun-poly.org). We also thank Dr. Herbert Barthel (Wacker Chemie AG), Prof. Dr. Ray Baughman (Nanotech Institute, Technical University of Texas), Dimitris Kastanis MSc. and Dr. Konstantinos Dassios (FORTH/ICE-HT, Greece), Prof. Ramani Narayan (Michigan State University, USA), Dr. Peter Krüger (Bayer Material Science AG) and Dr. Miguel Angel López-Manchado (Institute for Polymer Science and Technology (CSIC), Madrid) for their helpfulness in providing us with technical information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Roes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roes, A.L., Tabak, L.B., Shen, L. et al. Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites. J Nanopart Res 12, 2011–2028 (2010). https://doi.org/10.1007/s11051-009-9819-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9819-3

Keywords

Navigation