Skip to main content
Log in

Structure and magnetism of Co:CoO core–shell nanoclusters

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Transmission electron microscopy (TEM) and electron diffraction (ED) are used to investigate the nanostructures of two ensembles of Co:CoO core–shell particles. TEM images show that particles of size about 12 nm are almost fully oxidized, while particles with size about 18 nm have a core–shell structure where a Co core is surrounded by a shell of CoO. ED simulation confirms that the larger particles have an fcc-structured Co core and a rock-salt CoO shell structure, while the smaller particles mostly have the rock-salt CoO structure. The core–shell structure is responsible for the unusual magnetic properties of the Co:CoO nanoclusters, especially the occurrence of inverted hysteresis loops (proteresis), but previous research has been indirect, largely based on magnetic measurements and on a cross-comparison with granular materials. Our measurements show that the structures have ferromagnetic fcc Co cores of varying sizes down to 1 nm which are surrounded by antiferromagnetic rock-salt CoO shells. The core radii obtained from the TEM pictures are used to estimate the exchange interactions responsible for proteresis and to pinpoint the core-size window in which proteresis occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. For the meaning of A and K in antiferromagnets, see e.g., Richter and Skomski (1989).

References

  • De Toro JA, Andrés JP, González JA, Muñiz P, Muñoz T, Normile PS, Riveiro JM (2006) Exchange bias and nanoparticle magnetic stability in Co-CoO composites. Phys Rev B 73:094449

    Article  ADS  Google Scholar 

  • Gangopadhyay S, Hadjipanayis GC, Sorensen CM, Klabunde KJ (1992) Magnetic properties of ultrafine Co particles. IEEE Trans Mag 28:3174–3176

    Article  CAS  ADS  Google Scholar 

  • Gangopadhyay S, Hadjipanayis GC, Sorensen CM, Klabunde KJ (1993) Exchange anisotropy in oxide passivated Co fine particles. J Appl Phys 73:6964–6966

    Article  CAS  ADS  Google Scholar 

  • Kalska B, Fumagalli P, Hilgendorff M, Giersig M (2008) Co/CoO core-shell nanoparticles-temperature-dependent magneto-optic studies. Mater Chem Phys 112:1129–1132

    Article  CAS  Google Scholar 

  • Li XZ (2004) JECP/PCED—a computer program for simulation of polycrystalline electron diffraction pattern and phase identification. Ultramicroscopy 99:257–261

    Article  CAS  PubMed  Google Scholar 

  • Li XZ (2007) Quantitative analysis of polycrystalline electron diffraction patterns. In: Marko M, Scott JH, Vicenzi E, Dekanich S, Frafjord J, Kotula P, McKernan S, Shields J (eds) Proceeding of microscopy and microanalysis 2007. Microsc Microanal 13(Suppl 2):966CD. Cambridge University Press, New York

  • Meiklejohn WH, Bean CP (1956) New magnetic anisotropy. Phys Rev 102:1413–1414

    Article  ADS  Google Scholar 

  • O’Shea MJ, Al-Sharif AL (1994) Inverted hysteresis in magnetic systems with interface exchange. J Appl Phys 75:6673–6675

    Article  ADS  Google Scholar 

  • Qiang Y, Sabiryanov RF, Jaswal SS, Liu Y, Haberland H, Sellmyer DJ (2002) Magnetism of Co nanocluster films. Phys Rev B 66:064404

    Article  ADS  Google Scholar 

  • Richter J, Skomski R (1989) Antiferromagnets with random anisotropy. Influence of the dimensionality. Phys Status Solidi B 153:711–719

    Article  ADS  Google Scholar 

  • Skomski R (2001) Micromagnetic spin structure. In: Ziese M, Thornton MJ (eds) Spin electronics. Springer, Berlin, pp 204–231

    Chapter  Google Scholar 

  • Skomski R (2003) Nanomagnetics. J Phys 15:R841–R896

    CAS  Google Scholar 

  • Skomski R, Zeng H, Zheng M, Sellmyer DJ (2000) Magnetic localization in transition-metal nanowires. Phys Rev B 62:3900–3904

    Article  CAS  ADS  Google Scholar 

  • Vasilakaki M, Trohidou KN (2009) Numerical study of the exchange-bias effect in nanoparticles with ferromagnetic core/ferrimagnetic disordered shell morphology. Phys Rev B 79:144402

    Article  ADS  Google Scholar 

  • Villars P (1998) Pearson’s handbook, desk edition crystallographic data for intermetallic phases. ASM International, Materials Park

  • Wei XH, Skomski R, Sun Z-G, Sellmyer DJ (2008) Proteresis in Co:CoO core–shell nanoclusters. J Appl Phys 103:07D514

    Article  Google Scholar 

  • Xu YF, Yan ML, Sellmyer DJ (2006) Cluster-assembled nanocomposites. In: Sellmyer DJ, Skomski R (eds) Advanced magnetic nanostructures. Springer, Berlin, pp 207–238

    Chapter  Google Scholar 

  • Yamauchi T, Shiiki K (2002) Coercive force of Co–CoO thin films. Jpn J Appl Phys 41:5982–5985

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgment

This research is supported by NSF-MRSEC (Grant No. NSF-DMR-0820521) and NCMN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Z. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X.Z., Wei, X.H., Skomski, R. et al. Structure and magnetism of Co:CoO core–shell nanoclusters. J Nanopart Res 12, 789–794 (2010). https://doi.org/10.1007/s11051-009-9782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9782-z

Keywords

Navigation