Journal of Nanoparticle Research

, Volume 10, Supplement 1, pp 153–161 | Cite as

Aerosol flow in a tube furnace reactor of gas-phase synthesised silver nanoparticles

  • D. Mitrakos
  • J. Jokiniemi
  • U. Backman
  • C. Housiadas
Research Paper


In a previous work, gas-phase synthesis of silver nanoparticles through evaporation of silver powder and subsequent particle nucleation by cooling was shown to be a viable method for achieving high purity silver nanoparticles (Backman et al. J Nanopart Res 4:325–335, 2002). In order to control the size of the produced nanoparticles, careful design of the reactor is required with respect to thermal and flow characteristics. In the present work, the silver nanoparticle reactor is rigorously simulated by means of multidimensional computational fluid and particle dynamics. The CFD-computed flow is input for a combined simulation of the vapour field and particle homogeneous nucleation, growth and coagulation. The results are compared with the experimental data and with the predictions from the usually employed simple model of an idealized plug flow reactor. The multidimensional CFD-based analysis is shown to explain and help understand different aspects of the reactor operation and size distribution of the particles produced. Yet the simple plug flow method is found to provide reasonable accuracy when an appropriate correction factor is used for the nucleation rate. Considering its robustness and computational simplicity, the plug flow method can be qualified as adequate from the engineering practical point of view for the case of silver nanoparticle reactors.


Aerosol modelling Aerosol reactors Silver nanoparticles Computational fluid-particle dynamics Nanomanufacturing 



This work was partially supported by the European Commission under grant FI6O-CT-2004-509065, project EC-SARNET.


  1. Akhtar MK, Xiong Y, Pratsinis SE (1991) Vapor synthesis of titania powder by titanium tetrachloride oxidation. AIChE J 37:1561–1570. doi: 10.1002/aic.690371013 CrossRefGoogle Scholar
  2. Analytic & Computational Research Inc (ACRi) (2001) ANSWER user’s manual. Analytic and Computational Research Inc. Bel Air, California.
  3. Backman U, Jokiniemi JK, Auvinen A, Lehtinen KEJ (2002) The effect of boundary conditions on gas-phase synthesised silver nanoparticles. J Nanopart Res 4:325–335. doi: 10.1023/A:1021148001483 CrossRefGoogle Scholar
  4. Drossinos Y, Housiadas C (2006) In: Crowe CT (ed) Aerosol flows, in multiphase flow handbook. CRC Press – Taylor & Francis, Boca RatonGoogle Scholar
  5. Frenkel J (1955) Kinetic theory of liquids. Dover, New YorkGoogle Scholar
  6. Giesen B, Orthner HR, Kowalik A, Roth P (2004) On the interaction of coagulation and coalescence during gas-phase synthesis of Fe-nanoparticle agglomerates. Chem Eng Sci 59:2201–2211. doi: 10.1016/j.ces.2004.02.013 CrossRefGoogle Scholar
  7. Housiadas C, Larrodé FE, Drossinos Y (2000) Convective diffusion in a tube with non-uniform inlet conditions. J Aerosol Sci 31:959–968. doi: 10.1016/S0021-8502(99)00575-3 CrossRefGoogle Scholar
  8. Housiadas C, Papanikolaou E, Drossinos Y (2002) Combined heat and mass transfer in laminar-flow diffusion nucleation chamber. J Aerosol Sci 33:797–816. doi: 10.1016/S0021-8502(01)00214-2 CrossRefGoogle Scholar
  9. Jeong JI, Choi M (2003) Analysis of non-spherical polydisperse particle growth in two-dimensional tubular reactor. J Aerosol Sci 34:713–732. doi: 10.1016/S0021-8502(03)00028-4 CrossRefGoogle Scholar
  10. Kommu S, Khonami B, Biswas P (2004) Simulation of aerosol dynamics and transport in chemically reacting particulate matter laden flows. Part II: Application to CVD reactors. Chem Eng Sci 59:359–371. doi: 10.1016/j.ces.2003.05.010 CrossRefGoogle Scholar
  11. Lehtinen KEJ, Backman U, Jokiniemi JK, Kulmala M (2004) Three-body collisions as a particle formation mechanism in silver nanoparticles syntesis. J Colloid Interface Sci 274:526–530. doi: 10.1016/j.jcis.2004.01.023 CrossRefGoogle Scholar
  12. Lu S-Y, Lin H-C, Lin C-H (1999) Modeling particle growth and deposition in a tubular CVD reactor. J Cryst Growth 200:527–542. doi: 10.1016/S0022-0248(99)00041-X CrossRefGoogle Scholar
  13. Mitrakos D, Mitsakou C, Housiadas C (2004) Simulation of laminar flow aerosol reactor with a 1-D sectional aerosol model. J Aerosol Sci 35:S895–S896Google Scholar
  14. Mitrakos D, Hinis E, Housiadas C (2007) Sectional modelling of aerosol dynamics in multi-dimensional flows. Aerosol Sci Technol 41:1076–1088. doi: 10.1080/02786820701697804 CrossRefGoogle Scholar
  15. Mühlenweng H, Gutch A, Schild A, Pratsinis SE (2002) Process simulation of gas-to-particle-synthesis via population balances: investigation of three models. Chem Eng Sci 57:2305–2322. doi: 10.1016/S0009-2509(02)00119-7 CrossRefGoogle Scholar
  16. Nakaso K, Fujimoto T, Seto T, Shimada M, Okuyama K, Lunden M (2001) Size distribution change of titania nano-particle agglomerates generated by gas-phase reaction, agglomeration, and sintering. Aerosol Sci Technol 35:929–947. doi: 10.1080/02786820126857 CrossRefGoogle Scholar
  17. Nguyen HV, Okuyama K, Mimura T, Kousaka Y, Flagan RC, Seinfeld JH (1987) Homogeneous and heterogeneous nucleation in a laminar flow reactor. J Colloid Interface Sci 119:491–504. doi: 10.1016/0021-9797(87)90295-5 CrossRefGoogle Scholar
  18. Park KS, Lee BW, Choi M (1999) An analysis of aerosol dynamics in the modified chemical vapor deposition. Aerosol Sci Technol 31:258–274. doi: 10.1080/027868299304147 CrossRefGoogle Scholar
  19. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1994) Numerical receipes in fortran: the art of scientific computing, 2nd edn. Cambridge University PressGoogle Scholar
  20. Pyykönen J, Jokiniemi J (2000) Computational fluid based sectional aerosol modelling schemes. J Aerosol Sci 31:531–550. doi: 10.1016/S0021-8502(99)00546-7 CrossRefGoogle Scholar
  21. Scheibel HG, Porstendörfer J (1983) Generation of monodisperse Ag- and NaCl-aerosols with particle diameters between 2 and 300 nm. J Aerosol Sci 14:113–126. doi: 10.1016/0021-8502(83)90035-6 CrossRefGoogle Scholar
  22. Schild A, Cutsch A, Mühlenweng H, Pratsinis SE (1999) Simulation of nanoparticle production in premixed aerosol flow reactors by interfacing fluid mechanics and particle dynamics. J Nanopart Res 1:305–315. doi: 10.1023/A:1010025121980 CrossRefGoogle Scholar
  23. Skillas G, Becker C, Mühlenweng H, Behnisch J (2005) Simulation of particulates in a carbon black reactor. J Nanopart Res 7:15–27. doi: 10.1007/s11051-004-5746-5 CrossRefGoogle Scholar
  24. Spicer PT, Chaoul O, Tsantilis S, Pratsinis SE (2002) Titania formation by TiCl4 gas oxidation, surface growth and coagulation. J Aerosol Sci 33:17–34. doi: 10.1016/S0021-8502(01)00069-6 CrossRefGoogle Scholar
  25. Talbot L, Cheng R, Schefer R, Willis D (1980) Thermophoresis of particles in a heated boundary layer. J Fluid Mech 101:737–758. doi: 10.1017/S0022112080001905 CrossRefGoogle Scholar
  26. Tsantilis S, Pratsinis SE (2000) Evolution of primary and aggregate particle-size distributions by coagulation and sintering. AIChE J 46:407–415. doi: 10.1002/aic.690460218 CrossRefGoogle Scholar
  27. Tsantilis S, Kammler HK, Pratsinis SE (2002) Population balance modeling of flame synthesis of titania nanoparticles. Chem Eng Sci 54:2139–2156. doi: 10.1016/S0009-2509(02)00107-0 CrossRefGoogle Scholar
  28. Wilck M, Stratmann F (1997) A 2-D multicomponent modal aerosol model and its application to laminar flow reactors. J Aerosol Sci 28:959–972. doi: 10.1016/S0021-8502(96)00481-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • D. Mitrakos
    • 1
    • 2
  • J. Jokiniemi
    • 3
    • 4
  • U. Backman
    • 3
  • C. Housiadas
    • 1
  1. 1.“Demokritos” National Centre for Scientific ResearchAgia Paraskevi, AthensGreece
  2. 2.Faculty of Mechanical EngineeringNational Technical University of AthensAthensGreece
  3. 3.Fine ParticlesVTT Technical Research Centre of FinlandVTT, EspooFinland
  4. 4.Department of Environmental Sciences, Fine Particle and Aerosol Technology LaboratoryUniversity of KuopioKuopioFinland

Personalised recommendations