Skip to main content
Log in

IVA using complex multivariate GGD: application to fMRI analysis

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Examples of complex-valued random phenomena in science and engineering are abound, and joint blind source separation (JBSS) provides an effective way to analyze multiset data. Thus there is a need for flexible JBSS algorithms for efficient data-driven feature extraction in the complex domain. Independent vector analysis (IVA) is a prominent recent extension of independent component analysis to multivariate sources, i.e., to perform JBSS, but its effectiveness is determined by how well the source models used match the true latent distributions and the optimization algorithm employed. The complex multivariate generalized Gaussian distribution (CMGGD) is a simple, yet effective parameterized family of distributions that account for full second- and higher-order statistics including noncircularity, a property that has been often omitted for convenience. In this paper, we marry IVA and CMGGD to derive, IVA-CMGGD, with a number of numerical optimization implementations including steepest descent, the quasi-Newton method Broyden–Fletcher–Goldfarb–Shanno (BFGS), and its limited-memory sibling limited-memory BFGS all in the complex-domain. We demonstrate the performance of our algorithm on simulated data as well as a 14-subject real-world complex-valued functional magnetic resonance imaging dataset against a number of competing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Unitary up to a factor of 2 implies \({\mathbf {T}}{\mathbf {T}}^H={\mathbf {T}}^H{\mathbf {T}} = 2{\mathbf {I}}\).

  2. The classical singular value decomposition is sufficient to obtain the noncircularity coefficients. However, if the corresponding canonical projections are needed, a special, complex-symmetric decomposition called the Takagi factorization (Horn and Johnson 1990; Schreier and Scharf 2010; Moreau and Adalı 2013) is required to maintain the complex augmented form.

  3. We maintain unit-norm rows of \({\mathbf {W}}\) to prevent driving the cost function lower through scaling alone.

  4. For the conjugate gradient method, not discussed in this paper, the value of \(c_2\) is often taken to be 0.1 (Nocedal and Wright 2006).

  5. SPM URL: http://www.fil.ion.ucl.ac.uk/spm/software/spm12/.

References

  • Adalı, T., Anderson, M., & Fu, G. S. (2014). Diversity in independent component and vector analyses: Identifiability, algorithms, and applications in medical imaging. IEEE Signal Processing Magazine, 31(3), 18–33.

    Article  Google Scholar 

  • Adalı, T., & Calhoun, V. D. (2007). Complex ICA of brain imaging data. IEEE Signal Processing Magazine, 24(5), 136.

    Article  Google Scholar 

  • Adalı, T., & Schreier, P. (2014). Optimization and estimation of complex-valued signals: Theory and applications in filtering and blind source separation. IEEE Signal Processing Magazine, 31(5), 112–128. https://doi.org/10.1109/MSP.2013.2287951.

    Article  Google Scholar 

  • Adalı, T., Schreier, P., & Scharf, L. (2011a). Complex-valued signal processing: The proper way to deal with impropriety. IEEE Transactions on Signal Processing, 59(11), 5101–5125. https://doi.org/10.1109/TSP.2011.2162954.

    Article  MathSciNet  MATH  Google Scholar 

  • Adalı, T., Schreier, P. J., & Scharf, L. L. (2011b). Complex-valued signal processing: The proper way to deal with impropriety. IEEE Transactions on Signal Processing, 59(11), 5101–5125.

    Article  MathSciNet  Google Scholar 

  • Anderson, M., Li, X. L., & Adalı, T. (2012a). Complex-valued independent vector analysis: Application to multivariate Gaussian model. Signal Processing, 92(8), 1821–1831.

    Article  Google Scholar 

  • Anderson, M., Li, X. L., Rodriguez, P., & Adalı, T. (2012b). An effective decoupling method for matrix optimization and its application to the ICA problem. In 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE (pp. 1885–1888).

  • Arja, S. K., Feng, Z., Chen, Z., Caprihan, A., Kiehl, K. A., Adalı, T., et al. (2010). Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks. NeuroImage, 49(4), 3149–3160.

    Article  Google Scholar 

  • Brandwood, D. H. (1983). A complex gradient operator and its application in adaptive array theory. Communications, Radar and Signal Processing, IEE Proceedings F, 130(1), 11–16. https://doi.org/10.1049/ip-f-1.1983.0003.

    Article  MathSciNet  Google Scholar 

  • Bridwell, D. A., Rachakonda, S., Silva, R. F., Pearlson, G. D., & Calhoun, V. D. (2018). Spatiospectral decomposition of multi-subject EEG: Evaluating blind source separation algorithms on real and realistic simulated data. Brain Topography, 31(1), 47–61.

    Article  Google Scholar 

  • Calhoun, V., Adalı, T., Pearlson, G., van Zijl, P., & Pekar, J. (2002). Independent component analysis of fMRI data in the complex domain. Magnetic Resonance in Medicine, 48(1), 180–192. https://doi.org/10.1002/mrm.10202.

    Article  Google Scholar 

  • Calhoun, V. D., & Adalı, T. (2006). Unmixing fMRI with independent component analysis. IEEE Engineering in Medicine and Biology Magazine, 25(2), 79–90.

    Article  Google Scholar 

  • Calhoun, V. D., & Adalı, T. (2012). Multisubject independent component analysis of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Reviews in Biomedical Engineering, 5, 60–73.

    Article  Google Scholar 

  • Cardoso, J. F. (1998). Blind signal separation: Statistical principles. Proceedings of the IEEE, 86(10), 2009–2025.

    Article  Google Scholar 

  • Dea, J. T., Anderson, M., Allen, E., Calhoun, V. D., & Adalı, T. (2011). IVA for multi-subject fMRI analysis: A comparative study using a new simulation toolbox. In 2011 IEEE international workshop on machine learning for signal processing (MLSP), IEEE (pp. 1–6).

  • Du, W., Fu, G. S., Calhoun, V. D., Adalı, T. (2014a). Performance of complex-valued ICA algorithms for fMRI analysis: Importance of taking full diversity into account. In 2014 IEEE international conference on image processing (ICIP), IEEE (pp. 3612–3616).

  • Du, W., Levin-Schwartz, Y., Fu, G. S., Ma, S., Calhoun, V. D., & Adalı, T. (2016). The role of diversity in complex ICA algorithms for fMRI analysis. Journal of Neuroscience Methods, 264, 129–135.

    Article  Google Scholar 

  • Du, W., Ma, S., Fu, G. S., Calhoun, V. D., & Adalı, T. (2014b). A novel approach for assessing reliability of ICA for fMRI analysis. In 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE (pp. 2084–2088).

  • Feng, Z., Caprihan, A., Blagoev, K. B., & Calhoun, V. D. (2009). Biophysical modeling of phase changes in BOLD fMRI. NeuroImage, 47(2), 540–548.

    Article  Google Scholar 

  • Fu, G. S., Phlypo, R., Anderson, M., & Adalı, T. (2015). Complex independent component analysis using three types of diversity: Non-Gaussianity, nonwhiteness, and noncircularity. IEEE Transactions on Signal Processing, 63(3), 794–805.

    Article  MathSciNet  Google Scholar 

  • Girolami, M. (1998). An alternative perspective on adaptive independent component analysis algorithms. Neural Computation, 10(8), 2103–2114.

    Article  MathSciNet  Google Scholar 

  • Haykin, S. O. (2014). Adaptive Filter theory. Pearson.

  • Himberg, J., & Hyvarinen, A. (2003). ICASSO: Software for investigating the reliability of ICA estimates by clustering and visualization. In 2003 IEEE 13th workshop on neural networks for signal processing, 2003. NNSP’03. IEEE (pp. 259–268).

  • Horn, R. A., & Johnson, C. R. (1990). Matrix analysis. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis (Vol. 46). Hoboken: Wiley.

    Book  Google Scholar 

  • Itakura, K., Bando, Y., Nakamura, E., Itoyama, K., Yoshii, K., & Kawahara, T. (2018). Bayesian multichannel audio source separation nased on integrated source and spatial models. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26, 831–846.

    Article  Google Scholar 

  • Kim, T., Eltoft, T., & Lee, T. W. (2006). Independent vector analysis: An extension of ICA to multivariate components. In International conference on independent component analysis and signal separation (pp. 165–172). Springer.

  • Kuang, L. D., Lin, Q. H., Gong, X. F., Cong, F., & Calhoun, V. D. (2017). Adaptive independent vector analysis for multi-subject complex-valued fMRI data. Journal of Neuroscience Methods, 281(Supplement C), 49–63. https://doi.org/10.1016/j.jneumeth.2017.01.017.

    Article  Google Scholar 

  • Lee, I., Kim, T., & Lee, T. W. (2006). Complex fastIVA: A robust maximum likelihood approach of MICA for convolutive BSS. In ICA (Vol. 6, pp. 625–632), Springer.

  • Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417–441.

    Article  Google Scholar 

  • Lee, J. H., Lee, T. W., Jolesz, F. A., & Yoo, S. S. (2008). Independent vector analysis (IVA): Multivariate approach for fMRI group study. Neuroimage, 40(1), 86–109.

    Article  Google Scholar 

  • Li, H., Correa, N. M., Rodriguez, P. A., Calhoun, V. D., & Adalı, T. (2011). Application of independent component analysis with adaptive density model to complex-valued fMRI data. IEEE Transactions on Biomedical Engineering, 58(10), 2794–2803.

    Article  Google Scholar 

  • Li, X. L., & Zhang, X. D. (2007). Nonorthogonal joint diagonalization free of degenerate solution. IEEE Transactions on Signal Processing, 55(5), 1803–1814.

    Article  MathSciNet  Google Scholar 

  • Long, Q., Jia, C., Boukouvalas, Z., Gabrielson, B., Emge, D., & Adalı, T. (2018). Consistent run selection for independent component analysis: Application to fMRI analysis. In ICASSP, accepted, IEEE.

  • Lv, H., Wang, Z., Tong, E., Williams, L., Zaharchuk, G., Zeineh, M., et al. (2018). Resting-state functional MRI: Everything that nonexperts have always wanted to know. American Journal of Neuroradiology, 39, 1390–1399.

    Article  Google Scholar 

  • Ma, S., Phlypo, R., Calhoun, V. D., & Adalı, T. (2013). Capturing group variability using IVA: A simulation study and graph-theoretical analysis. In 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE (pp. 3128–3132).

  • Michael, A. M., Anderson, M., Miller, R. L., Adalı, T., & Calhoun, V. D. (2014). Preserving subject variability in group fMRI analysis: Performance evaluation of GICA vs. IVA. Frontiers in Systems Neuroscience, 8, 106.

    Article  Google Scholar 

  • Moreau, E., & Adalı, T. (2013). Blind identification and separation of complex-valued signals. Hoboken: Wiley.

    Book  Google Scholar 

  • Moreau, E., & Macchi, O. (1994). A one stage self-adaptive algorithm for source separation. In 1994 IEEE international conference on acoustics, speech, and signal processing (Vol. 3, pp. III–49), IEEE, 1994. ICASSP-94.

  • Mowakeaa, R., Boukouvalas, Z., Adalı, T., & Cavalcante, C. (2016). On the characterization, generation, and efficient estimation of the complex multivariate GGD. In 2016 IEEE on sensor array and multichannel signal processing workshop (SAM), IEEE (pp. 1–5).

  • Na, Y., Yu, J., & Chai, B. (2013). Independent vector analysis using subband and subspace nonlinearity. EURASIP Journal on Advances in Signal Processing, 1, 74.

    Article  Google Scholar 

  • Nocedal, J., & Wright, S. J. (2006). Numerical optimization. Berlin: Springer.

    MATH  Google Scholar 

  • Ollila, E., Tyler, D. E., Koivunen, V., & Poor, H. V. (2012). Complex elliptically symmetric distributions: Survey, new results and applications. IEEE Transactions on Signal Processing, 60(11), 5597–5625.

    Article  MathSciNet  Google Scholar 

  • Rachakonda, S., Egolf, E., Correa, N., & Calhoun, V. (2007). Group ICA of fMRI toolbox (GIFT) manual. Dostupné z https://www.nitrc.org/docman/viewphp/55/295/v13d_GIFTManual.pdf. Accessed 2019. [cit 2011-11-5].

  • Rodriguez, P., Calhoun, V., & Adalı, T. (2012). De-noising, phase ambiguity correction and visualization techniques for complex-valued ICA of group fMRI data. Pattern Recognition, 45(6), 2050–2063.

    Article  Google Scholar 

  • Rodriguez, P. A., Anderson, M., Calhoun, V. D., et al. (2015). General nonunitary constrained ICA and its application to complex-valued fmri data. IEEE Transactions on Biomedical Engineering, 62(3), 922–929.

    Article  Google Scholar 

  • Rodriguez, P. A., Correa, N. M., Eichele, T., Calhoun, V. D., & Adalı, T. (2011). Quality map thresholding for de-noising of complex-valued fMRI data and its application to ICA of fMRI. Journal of Signal Processing Systems, 65(3), 497–508.

    Article  Google Scholar 

  • Rowe, D. B. (2005). Modeling both the magnitude and phase of complex-valued fMRI data. Neuroimage, 25(4), 1310–1324.

    Article  Google Scholar 

  • Schreier, P. J., & Scharf, L. L. (2010). Statistical signal processing of complex-valued data: The theory of improper and noncircular signals. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sorber, L., Barel, M. V., & Lathauwer, L. D. (2012). Unconstrained optimization of real functions in complex variables. SIAM Journal on Optimization, 22(3), 879–898.

    Article  MathSciNet  Google Scholar 

  • Wax, M., & Kailath, T. (1985). Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(2), 387–392.

    Article  MathSciNet  Google Scholar 

  • Wirtinger, W. (1927). Zur formalen theorie der funktionen von mehr komplexen veränderlichen. Mathematische Annalen, 97(1), 357–375.

    Article  MathSciNet  Google Scholar 

  • Xiong, W., Li, Y. O., Correa, N., Li, X. L., Calhoun, V. D., & Adalı, T. (2012). Order selection of the linear mixing model for complex-valued fMRI data. Journal of Signal Processing Systems, 67(2), 117–128.

    Article  Google Scholar 

  • Xiong, W., Li, Y. O., Li, H., Adalı, T., & Calhoun, V. D. (2008). On ICA of complex-valued fMRI: Advantages and order selection. In IEEE international conference on acoustics, speech and signal processing, 2008. ICASSP 2008. IEEE (pp. 529–532).

Download references

Acknowledgements

The hardware used in the computational studies is part of the UMBC High Performance Computing Facility (HPCF). The facility is supported by the U.S. National Science Foundation through the MRI program (Grant Nos. CNS-0821258, CNS-1228778, OAC-1726023, 1618551 and 1631838) and the SCREMS program (Grant No. DMS-0821311), with additional substantial support from the University of Maryland, Baltimore County (UMBC). See hpcf.umbc.edu for more information on HPCF and the Projects using its resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Mowakeaa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by NSF-CCF 1618551 and NSF-NCS 1631838.

Appendices

Appendix

Derivation of gradient

Since (15) is a real-valued function of complex variables, it suffices to compute the gradient with respect to \({\mathbf {w}}_n^{[k]*}\) using Wirtinger calculus. First, by applying the chain rule we can write:

$$\begin{aligned} \frac{\partial J({\mathbf {W}})}{\partial {\mathbf {w}}_n^{[k]*}} = \frac{\partial J({\mathbf {W}})}{\partial {\mathbf {y}}_n} \frac{\partial {\mathbf {y}}_n}{\partial w_n^{[k]*}} + \frac{\partial J({\mathbf {W}})}{\partial {\mathbf {y}}_n^*} \frac{\partial {\mathbf {y}}_n^*}{\partial w_n^{[k]*}}. \end{aligned}$$
(28)

Due to (12), the first term in (28) is equal to 0 leaving only the second term. Next, we subdivide the IVA-CMGGD cost function in (15) into two terms:

$$\begin{aligned} J({\mathbf {W}}) = J_1({\mathbf {W}}) + J_2({\mathbf {W}}), \end{aligned}$$
(29)

where

$$\begin{aligned} J_1({\mathbf {W}}) = \frac{1}{2}\sum _{n=1}^N{{\mathbb {E}}}\left\{ \left( \frac{\eta _n}{2}\underline{{\mathbf {y}}}_n^H\underline{{\mathbf {C}}}_n^{-1}\underline{{\mathbf {y}}}_n\right) ^{\beta _n} \right\} , \end{aligned}$$
(30)

and

$$\begin{aligned} J_2({\mathbf {W}})=- \sum _{k=1}^K\left( \log \begin{vmatrix}{\mathbf {W}}^{[k]}\end{vmatrix}^2\right) . \end{aligned}$$
(31)

Differentiating \(J_1({\mathbf {W}})\) yields:

$$\begin{aligned} \frac{\partial J_1({\mathbf {W}})}{\partial {\mathbf {w}}_n^{[k]*}}&= \frac{1}{2}{{\mathbb {E}}}\left\{ \beta _n\left( \frac{\eta _n}{2}\underline{{\mathbf {y}}}_n^H\underline{{\mathbf {C}}}_n^{-1}\underline{{\mathbf {y}}}_n\right) ^{\beta _n-1}\left( \frac{\eta _n}{2}{\mathbf {e}}_k^\top \underline{{\mathbf {C}}}_n^{-1}\underline{{\mathbf {y}}}_n\right) {\mathbf {x}}^{[k]*}\right\} \nonumber \\&= {{\mathbb {E}}} \left\{ \frac{\beta _n\eta _n^{\beta _n}}{2^{\beta _n+1}} \frac{\left( {\mathbf {e}}_k^\top \underline{{\mathbf {C}}}^{-1}_n\underline{{\mathbf {y}}}_n\right) {\mathbf {x}}^{[k]*}}{\left( \underline{{\mathbf {y}}}_n^H\underline{{\mathbf {C}}}_n^{-1}\underline{{\mathbf {y}}}_n\right) ^{(1-\beta _n)}} \right\} , \end{aligned}$$
(32)

where \({\mathbf {e}}_k\) is defined as in (16) and \(\frac{\partial {\mathbf {y}}_n^{*}}{\partial {\mathbf {w}}_n^{[k]*}}={\mathbf {x}}^{[k]*}\).

In order to differentiate \(J_2({\mathbf {W}})\), we utilize a decoupling procedure (Anderson et al. 2012a), originally established in Li and Zhang (2007). The purpose is to factorize each summand in (31) into the product of two terms: one dependent on \({\mathbf {w}}_n^{[k]}\) and the other independent of it. By defining \(\tilde{{\mathbf {W}}}_n^{[k]}\) to be the \((N-1)\times N\) matrix containing rows of \({\mathbf {W}}^{[k]}\) other than the nth, and by defining

$$\begin{aligned} {\bar{\omega }}_n^{[k]}=\sqrt{\left| \det \left( \tilde{{\mathbf {W}}}_n^{[k]}\tilde{{\mathbf {W}}}_n^{[k]H}\right) \right| }, \end{aligned}$$
(33)

the decoupling procedure admits the following representation for \(J_2({\mathbf {W}})\):

$$\begin{aligned} J_2({\mathbf {W}})=-\sum _{k=1}^K\log \left( \left| {\mathbf {w}}_n^{[k]H}{\mathbf {h}}_n^{[k]*}\right| ^2{\bar{\omega }}_n^{[k]2}\right) , \end{aligned}$$
(34)

where \({\mathbf {h}}_n^{[k]}\) is a unit-length vector orthogonal to each of \(\left\{ {\mathbf {w}}_n^{[m]}\right\} _{m\ne k}\). Then, the gradient of \(J_2({\mathbf {W}})\) can be computed as:

$$\begin{aligned} \frac{\partial J_2({\mathbf {W}})}{\partial {\mathbf {w}}_n^{[k]*}}&= \frac{{\mathbf {h}}_n^{[k]*}{\mathbf {h}}_n^{[k]\top }{\mathbf {w}}_n^{[k]}}{{\mathbf {w}}_n^{[k]H}{\mathbf {h}}_n^{[k]*}{\mathbf {h}}_n^{[k]\top }{\mathbf {w}}_n^{[k]}} \nonumber \\&= \frac{{\mathbf {h}}_n^{[k]*}}{{\mathbf {h}}_n^{[k]H}{\mathbf {w}}_n^{[k]*}}. \end{aligned}$$
(35)

Summing (32) and (35) yields the result in (16).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mowakeaa, R., Boukouvalas, Z., Long, Q. et al. IVA using complex multivariate GGD: application to fMRI analysis. Multidim Syst Sign Process 31, 725–744 (2020). https://doi.org/10.1007/s11045-019-00685-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-019-00685-0

Keywords

Navigation