Skip to main content
Log in

Comprehensive theoretical digging performance analysis for hydraulic excavator using convex polytope method

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a method for analyzing comprehensive theoretical digging performance of an excavator based on the convex polytope. The convex polytope is generated by using Newton–Euler’s equations to establish dynamic relationships between the digging capability of the bucket and the driving capability of hydraulic cylinders with the consideration of the excavator tipping and slipping constraints, and is used to identify the excavator’s output capability for digging forces and moments in the bucket force space. A set of indices for theoretically quantifying the digging capability, digging efficiency, as well as the matchability between the manipulator mechanism and the driving capability of hydraulic cylinders are proposed based on the polytope, and they are used to assess the digging trajectory characteristics and the dynamic digging performance of the entire excavator workspace. Two case studies for the excavator’s digging performance assessment and optimal digging trajectory generation are conducted to test and validate this method. The proposed method contributes to comprehensively and deeply understand the design principles of an excavator, and shows the promising application prospect for guiding the design and development of new excavators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Blouin, S., Hemami, A., Lipsett, M.: Review of resistive force models for earthmoving processes. J. Aerosp. Eng. 14, 102–111 (2001)

    Article  Google Scholar 

  2. Wilkinson, A., De Gennaro, A.: Digging and pushing lunar regolith: classical soil mechanics and the forces needed for excavation and traction. J. Terramech. 44, 133–152 (2007)

    Article  Google Scholar 

  3. Frimpong, S., Hu, Y., Inyang, H.: Dynamic Modeling of hydraulic shovel excavators for geomaterials. Int. J. Geomech. 8, 20–29 (2008)

    Article  Google Scholar 

  4. SAE J1179: Hydraulic excavator and manipulator digging forces (2008)

  5. ISO 6015: Earth-moving machinery—hydraulic excavators and manipulator loaders—methods of determining tool forces (2006)

  6. Flores, F.G., Kecskeméthy, A., Pöttker, A.: Workspace analysis and maximal force calculation of a face-shovel excavator using kinematical transformers. In: 12th IFToMM World Congress, Besancon, pp. 1–6 (2007)

    Google Scholar 

  7. Chen, J., Qing, F., Pang, X.: Mechanism optimal design of backhoe hydraulic excavator working device based on digging paths. J. Mech. Sci. Technol. 28(1), 213–222 (2014)

    Article  Google Scholar 

  8. Kim, J.W., Jung, S., Kim, J., Kim, J., Seo, T.W.: Optimal design of the front linkage of a hydraulic excavator for multi-objective function. J. Mech. Sci. Technol. 28(8), 3103–3111 (2014)

    Article  Google Scholar 

  9. Hall, A.S., McAree, P.R.: A study of the interaction between operator style and machine capability for a hydraulic mining excavator. J. Mech. Eng. Sci. 219(5), 477–489 (2005)

    Article  Google Scholar 

  10. Finotello, R., Grasso, T., Rossi, G., Tembile, A.: Computation of kinetostatic performances of robot manipulators with polytopes. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, vol. 4, pp. 3241–3246 (1998)

    Google Scholar 

  11. Wei, B., Gao, F.: Output force capacity polytope approach for actuator forces selection of three degrees of freedom excavating manipulator. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 228(11), 2007–2017 (2014)

    Article  Google Scholar 

  12. Wei, B., Gao, F.: A method to calculate working capacity space of multi-DOF manipulator and the application in excavating mechanism. Front. Mech. Eng. 7(2), 109–119 (2012)

    Article  Google Scholar 

  13. Janosevic, D., Mitrev, R., Andjelkovic, B., Petrov, P.: Quantitative measures for assessment of the hydraulic excavator digging efficiency. J. Zhejiang Univ. Sci. A 13(12), 926–942 (2012)

    Article  Google Scholar 

  14. Chen, J., Zou, Z., Pang, X.: Digging performance characterization for hydraulic excavator considering uncertainty during digging operation. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 232(5), 857–871 (2018)

    Article  Google Scholar 

  15. Zou, Z., Chen, J., Pang, X.: Optimum dimensional synthesis for the working mechanism of a hydraulic excavator to improve the digging performance. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 232(3), 357–370 (2018)

    Google Scholar 

  16. Worley, M.D., La Saponara, V.: A simplified dynamic model for front-end loader design. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 222(11), 2231–2249 (2008)

    Article  Google Scholar 

  17. Crane, C., Duffy, J.: A dynamic analysis of a spatial manipulator to determine payload weight. J. Robot. Syst. 20(7), 355–371 (2003)

    Article  MATH  Google Scholar 

  18. Šalinić, S., Bošković, G., Nikolić, M.: Dynamic modelling of hydraulic excavator motion using Kane’s equations. Autom. Constr. 44, 56–62 (2014)

    Article  Google Scholar 

  19. Koivo, A.J., Thoma, M., Kocaoglan, E., Andrade-Cetto, J.: Modeling and control of excavator dynamics during digging operation. J. Aerosp. Eng. 9, 10–18 (1996)

    Article  Google Scholar 

  20. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  21. Chan, T.F., Dubey, R.V.: A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators. IEEE Trans. Robot. Autom. 11(2), 286–292 (1995)

    Article  Google Scholar 

  22. Vahrenkamp, N., Asfour, T., Metta, G., Sandini, G., Dillmann, R.: Manipulability analysis. In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Osaka, Japan, pp. 568–573 (2012)

    Chapter  Google Scholar 

  23. Yue, S., Tso, S.K., Xu, W.L.: Maximum-dynamic-payload trajectory for flexible robot manipulators with kinematic redundancy. Mech. Mach. Theory 36, 785–800 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (grant no. 51475056). The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Pang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Forward kinematics of the driving mechanisms of the manipulator

Figure 10 shows the schematics of the driving mechanisms of the manipulator. Considering the boom cylinder driving loop \(\Delta\mathit{AFC}\), one has

$$ \theta _{2} = \cos^{ - 1} ( \alpha _{1} ) - \angle \mathit{CAB} - \angle X_{1}\mathit{AF}, \quad \alpha _{1} = \frac{\overline{\mathit{AF}}^{2} + \overline{\mathit{AC}}^{2} - r_{2}^{2}}{2 \overline{\mathit{AF}} \cdot \overline{\mathit{AC}}}, $$
(A.1)

where \(\angle X_{1}\mathit{AF}\) is the angle that \(\overline{\mathit{AF}}\) makes with the \(x_{1}\)-axis. By the time derivative of Eq. (A.1), the joint velocity \(\dot{\theta }_{2}\) is obtained:

$$ \dot{\theta }_{2} = \frac{r_{2}\dot{r}_{2}}{\overline{\mathit{AF}} \cdot \overline{\mathit{AC}} \cdot \sqrt{1 - \alpha _{1}^{2}}}. $$
(A.2)
Fig. 10
figure 10

Driving mechanisms of the manipulator. (a) Boom cylinder driving loop; (b) stick cylinder driving loop; (c) bucket cylinder driving loop

By further calculating the second derivative of joint angle \(\theta _{2}\) versus time, following equation can be derived:

$$ \ddot{\theta }_{2} = \frac{\dot{r}_{2}^{2} + r_{2}\ddot{r}_{2}}{ \overline{\mathit{AF}} \cdot \overline{\mathit{AC}} \cdot \sqrt{1 - \alpha _{1}^{2}}} - \frac{\alpha _{1}}{\sqrt{1 - \alpha _{1}^{2}}} \dot{\theta }_{2}^{2}. $$
(A.3)

After substituting the detailed representations of \(\alpha _{1}\) and \(\dot{\theta }_{2}\) into Eq. (A.3), joint acceleration \(\ddot{\theta }_{2}\) can be explicitly written as the function of \(r_{2}\), \(\dot{r}_{2}\) and \(\ddot{r}_{2}\). Equations (A.1)–(A.3) establish the forward kinematics of the boom cylinder driving mechanism.

For the stick cylinder loop \(\Delta\mathit{DBH}\), joint angle \(\theta _{3}\) is given by

$$ \theta _{3} = \pi - \cos^{ - 1} ( \alpha _{2} ) - \angle \mathit{GBH} - \angle \mathit{ABD}, \quad \alpha _{2} = \frac{\overline{\mathit{DB}}^{2} + \overline{\mathit{BH}}^{2} - r_{3}^{2}}{2 \overline{\mathit{DB}} \cdot \overline{\mathit{BH}}}. $$
(A.4)

The joint velocity \(\dot{\theta }_{3}\) is then given by differentiating the above expression, and it is written as

$$ \dot{\theta }_{3} = - \frac{r_{3}\dot{r}_{3}}{\overline{\mathit{DB}} \cdot \overline{\mathit{BH}} \cdot \sqrt{1 - \alpha _{2}^{2}}}. $$
(A.5)

Further the time derivative of \(\dot{\theta }_{3}\) is given by

$$ \ddot{\theta }_{3} = \frac{ - ( \dot{r}_{3}^{2} + r_{3}\ddot{r} _{3} )}{\overline{\mathit{DB}} \cdot \overline{\mathit{BH}} \cdot \sqrt{1 - \alpha _{2}^{2}}} + \frac{\alpha _{2}}{\sqrt{1 - \alpha _{2}^{2}}} \dot{\theta }_{3}^{2}. $$
(A.6)

Thus, giving the length of stick cylinder and the ram velocity and acceleration, forward motion relations of stick cylinder driving loop can be determined by Eqs. (A.4)–(A.6).

Bucket cylinder driving mechanism includes loop \(\Delta \mathit{ENK}\) and a four-bar linkage \(\Box \mathit{KNGL}\). Based on the geometry of the mechanism, it can be obtained

$$ \theta _{4} = \pi - \angle \mathit{JGL} - \angle \mathit{BGN} - \angle \mathit{KGN} - \angle \mathit{LGK}, $$
(A.7)

where

$$\begin{aligned} &\angle \mathit{KGN} = \cos^{ - 1} ( \alpha _{3} ),\qquad \alpha _{3} = \frac{\overline{\mathit{KG}}^{2} + \overline{\mathit{NG}}^{2} - \overline{\mathit{KN}}^{2}}{2 \overline{\mathit{KG}} \cdot \overline{\mathit{NG}}},\qquad \angle \mathit{LGK} = \cos^{ - 1} ( \alpha _{4} ),\\ &\alpha _{4} = \frac{\overline{\mathit{GL}} ^{2} + \overline{\mathit{KG}}^{2} - \overline{\mathit{KL}}^{2}}{2\overline{\mathit{GL}} \cdot \overline{\mathit{KG}}},\qquad \overline{\mathit{KG}} = \sqrt{\overline{\mathit{KN}}^{2} + \overline{\mathit{NG}}^{2} - 2 \overline{\mathit{KN}} \cdot \overline{\mathit{NG}} \cdot \cos ( \angle \mathit{KNG} )},\\ &\angle \mathit{KNG} = 2\pi - \angle \mathit{ENK} - \angle \mathit{ENB} - \angle \mathit{GNB}, \qquad \angle \mathit{ENK} = \cos^{ - 1} ( \alpha _{5} ),\\ &\alpha _{5} = \frac{\overline{\mathit{EN}}^{2} + \overline{\mathit{KN}}^{2} - r_{4}^{2}}{2 \overline{\mathit{EN}} \cdot \overline{\mathit{KN}}}. \end{aligned}$$

According to the derivation rules of the function of functions, one has

$$ \dot{\theta }_{4} = - \alpha _{8} \cdot \dot{r}_{4} - \alpha _{9} \cdot \dot{r}_{4}, $$
(A.8)

where

$$\begin{aligned} &\alpha _{8} = - \frac{\alpha _{7} \cdot ( \overline{\mathit{KG}}^{2} - \overline{\mathit{NG}}^{2} + \overline{\mathit{KN}}^{2} )}{2\overline{\mathit{KG}}^{2} \cdot \overline{\mathit{NG}} \cdot \sqrt{1 - \alpha _{3}^{2}}},\qquad \alpha _{7} = - \frac{\overline{\mathit{KN}} \cdot \overline{\mathit{NG}} \cdot \sin ( \angle \mathit{KNG} ) \cdot \alpha _{6}}{\overline{\mathit{KG}}}, \\ &\alpha _{6} = \frac{r_{4}}{\overline{\mathit{EN}} \cdot \overline{\mathit{KN}} \cdot \sqrt{1 - \alpha _{5}^{2}}},\qquad\alpha _{9} = - \frac{\alpha _{7} \cdot ( \overline{\mathit{KG}}^{2} - \overline{\mathit{GL}}^{2} + \overline{\mathit{KL}}^{2} )}{2\overline{\mathit{GL}} \cdot \overline{\mathit{KG}}^{2}\sqrt{1 - \alpha _{4}^{2}}}. \end{aligned}$$

Taking the derivative of Eq. (A.8) with respect to time, one obtains

$$ \ddot{\theta }_{4} = - \alpha _{10} \cdot \dot{r}_{4} - \alpha _{8} \cdot \ddot{r}_{4} - \alpha _{11} \cdot \dot{r}_{4} - \alpha _{9} \cdot \ddot{r}_{4}. $$
(A.9)

Then the various variants in Eq. (A.9) are given by

$$\begin{aligned} \alpha _{10} =& \frac{ - ( \alpha _{12} \cdot ( \overline{\mathit{KG}}^{2} - \overline{\mathit{NG}}^{2} + \overline{\mathit{KN}}^{2} ) + \alpha _{7}^{2} \cdot 2\overline{\mathit{KG}} \cdot \dot{r}_{4} )}{2 \overline{\mathit{KG}}^{2} \cdot \overline{\mathit{NG}} \cdot \sqrt{1 - \alpha _{3} ^{2}}} \\ &{}+ \frac{\alpha _{7} \cdot ( \overline{\mathit{KG}}^{2} - \overline{\mathit{NG}} ^{2} + \overline{\mathit{KN}}^{2} ) \cdot ( 2\alpha _{7} \cdot \dot{r}_{4} \cdot \sqrt{1 - \alpha _{3}^{2}} - \overline{\mathit{KG}} \cdot \frac{ ( \alpha _{3}\alpha _{15} )}{\sqrt{1 - \alpha _{3}^{2}}} )}{2 \overline{\mathit{KG}}^{3} \cdot \overline{\mathit{NG}} \cdot ( 1 - \alpha _{3} ^{2} )} \\ \alpha _{11} =& \frac{ - ( \alpha _{12} \cdot ( \overline{\mathit{KG}}^{2} - \overline{\mathit{GL}}^{2} + \overline{\mathit{KL}}^{2} ) + \alpha _{7}^{2} \cdot 2\overline{\mathit{KG}} \cdot \dot{r}_{4} )}{2 \overline{\mathit{KG}}^{2} \cdot \overline{\mathit{GL}} \cdot \sqrt{1 - \alpha _{4} ^{2}}} \\ &{}+ \frac{\alpha _{7} \cdot ( \overline{\mathit{KG}}^{2} - \overline{\mathit{GL}} ^{2} + \overline{\mathit{KL}}^{2} ) \cdot ( 2\alpha _{7} \cdot \dot{r}_{4} \cdot \sqrt{1 - \alpha _{4}^{2}} - \overline{\mathit{KG}} \cdot \frac{ ( \alpha _{4}\alpha _{16} )}{\sqrt{1 - \alpha _{4}^{2}}} )}{2 \overline{\mathit{KG}}^{3} \cdot \overline{\mathit{GL}} \cdot ( 1 - \alpha _{4} ^{2} )} \\ \alpha _{12} =& \frac{ - \overline{\mathit{KN}} \cdot \overline{\mathit{NG}} \cdot ( \alpha _{13} \cdot \sin ( \angle \mathit{KNG} ) - \alpha _{6}^{2} \cdot \dot{r}_{4} \cdot \cos ( \angle \mathit{KNG} ) ) - \alpha _{7}^{2} \cdot \dot{r}_{4}}{\overline{\mathit{KG}}} \\ \alpha _{13} =& \frac{\dot{r}_{4}}{\overline{\mathit{EN}} \cdot \overline{\mathit{KN}} \cdot \sqrt{1 - \alpha _{5}^{2}}} + \frac{\alpha _{6}\alpha _{5}\alpha _{14}}{ ( 1 - \alpha _{5}^{2} )},\qquad \alpha _{14} = - \frac{r _{4} \cdot \dot{r}_{4}}{\overline{\mathit{EN}} \cdot \overline{\mathit{KN}}} \\ \alpha _{15} =& - \alpha _{8} \cdot \sqrt{1 - \alpha _{3}^{2}} \cdot \dot{r}_{4},\qquad \alpha _{16} = - \alpha _{9} \cdot \sqrt{1 - \alpha _{4}^{2}} \cdot \dot{r}_{4}. \end{aligned}$$

Joint angle, angular velocity and acceleration of the bucket can be described by substituting above expressions of various variants into Eqs. (A.7)–(A.9), respectively.

Appendix B: Inverse kinematics of the driving mechanisms of the manipulator

Inverse kinematics equations of the driving mechanisms of the manipulator can be obtained by calculating the inverse functions of Eqs. (A.1)–(A.9). For the boom cylinder driving mechanism, the cylinder length, the ram velocity and acceleration are described in the following equations:

$$\begin{aligned} r_{2} =& \sqrt{\overline{\mathit{AF}}^{2} + \overline{\mathit{AC}}^{2} - 2 \overline{\mathit{AF}} \cdot \overline{\mathit{AC}} \cdot \alpha _{1}}, \end{aligned}$$
(B.1)
$$\begin{aligned} \dot{r}_{2} =& \frac{\overline{\mathit{AF}} \cdot \overline{\mathit{AC}} \cdot \sin ( \theta _{2} + \angle \mathit{CAB} + \angle X_{1}\mathit{AF} ) \cdot \dot{\theta }_{2}}{r_{2}}, \end{aligned}$$
(B.2)
$$\begin{aligned} \ddot{r}_{2} =& \frac{\overline{\mathit{AF}} \cdot \overline{\mathit{AC}} \cdot ( \alpha _{1} \cdot \dot{\theta }_{2}^{2} + \sin ( \theta _{2} + \angle \mathit{CAB} + \angle X_{1}\mathit{AF} ) \cdot \ddot{\theta }_{2} )}{r _{2}} - \frac{\dot{r}_{2}^{2}}{r_{2}}. \end{aligned}$$
(B.3)

Thus, Eqs. (B.1)–(B.3) establish the inverse kinematics of the boom cylinder driving mechanism.

Similarly, the corresponding inverse kinematics equations of the stick cylinder driving mechanism are written

$$\begin{aligned} r_{3} =& \sqrt{\overline{\mathit{DB}}^{2} + \overline{\mathit{BH}}^{2} - 2 \overline{\mathit{DB}} \cdot \overline{\mathit{BH}} \cdot \alpha _{2}}, \end{aligned}$$
(B.4)
$$\begin{aligned} \dot{r}_{3} =& - \frac{\overline{\mathit{DB}} \cdot \overline{\mathit{BH}} \cdot \sin ( \theta _{3} + \angle \mathit{GBH} + \angle \mathit{ABD} ) \cdot \dot{\theta }_{3}}{r_{3}}, \end{aligned}$$
(B.5)
$$\begin{aligned} \ddot{r}_{3} =& - \frac{\overline{\mathit{DB}} \cdot \overline{\mathit{BH}} \cdot ( - \alpha _{2} \cdot \dot{\theta }_{3}^{2} + \sin ( \theta _{3} + \angle \mathit{GBH} + \angle \mathit{ABD} ) \cdot \ddot{\theta }_{3} )}{r _{3}} - \frac{\dot{r}_{3}^{2}}{r_{3}}. \end{aligned}$$
(B.6)

Equations (B.4)–(B.6) can specify \(r_{3}\), \(\dot{r}_{3}\) and \(\ddot{r}_{3}\), once the joint angle, angular velocity and acceleration are given.

Finally, for the bucket cylinder driving mechanism, the bucket cylinder length is determined by

$$ r_{4} = \sqrt{\overline{\mathit{EN}}^{2} + \overline{\mathit{KN}}^{2} - 2 \overline{\mathit{EN}} \cdot \overline{\mathit{KN}} \cdot \alpha _{5}}, $$
(B.7)

where \(\alpha _{5}\) is the cosine of \(\angle \mathit{ENK}\), and \(\angle \mathit{ENK}\) is given by

$$\begin{aligned} &\angle \mathit{ENK} = 2\pi - \angle \mathit{KNG} - \angle \mathit{ENB} - \angle \mathit{GNB},\\ &\angle \mathit{KNG} = \cos^{ - 1} ( \beta _{1} ),\qquad \beta _{1} = \frac{ \overline{\mathit{KN}}^{2} + \overline{\mathit{NG}}^{2} - \overline{\mathit{KG}}^{2}}{2 \overline{\mathit{KN}} \cdot \overline{\mathit{NG}}}, \\ &\overline{\mathit{KG}} = \sqrt{\overline{\mathit{GL}}^{2} + \overline{\mathit{KL}}^{2} - 2 \overline{\mathit{GL}} \cdot \overline{\mathit{KL}} \cdot \cos ( \angle \mathit{GLK} )}, \qquad \angle \mathit{GLK} = \angle \mathit{NLK} + \angle \mathit{GLN}, \\ &\angle \mathit{NLK} = \cos ^{ - 1} ( \beta _{2} ),\qquad \beta _{2} = \frac{\overline{\mathit{LN}}^{2} + \overline{\mathit{KL}}^{2} - \overline{\mathit{KN}}^{2}}{2 \overline{\mathit{LN}} \cdot \overline{\mathit{KL}}},\\ &\overline{\mathit{LN}} = \sqrt{ \overline{\mathit{NG}}^{2} + \overline{\mathit{GL}}^{2} - 2\overline{\mathit{NG}} \cdot \overline{\mathit{GL}} \cdot \cos ( \angle \mathit{LGN} )}, \\ &\angle \mathit{LGN} = \angle \mathit{LGK} + \angle \mathit{KGN} = \pi - \angle \mathit{JGL} - \angle \mathit{BGN} - \theta _{4},\qquad \beta _{3} = \frac{\overline{\mathit{LN}}^{2} + \overline{\mathit{GL}} ^{2} - \overline{\mathit{NG}}^{2}}{2\overline{\mathit{LN}} \cdot \overline{\mathit{GL}}}, \\ &\angle \mathit{GLN} = \left \{ \textstyle\begin{array}{l@{\quad}l} \cos ^{ - 1} ( \beta _{3} ),&\angle \mathit{LGN} \le \pi\\ - \cos ^{ - 1} ( \beta _{3} ),& \angle \mathit{LGN} \ge \pi. \end{array}\displaystyle \right . \end{aligned}$$

Further, the ram velocity of the bucket cylinder can be calculated by

$$ \dot{r}_{4} = \frac{\overline{\mathit{EN}} \cdot \overline{\mathit{KN}} \cdot \sin ( \angle \mathit{KNG} + \angle \mathit{ENB} + \angle \mathit{GNB} ) \cdot \beta _{4}}{r _{4}}, $$
(B.8)

where

$$\begin{aligned} &\beta _{4} = \frac{\overline{\mathit{KG}} \cdot \beta _{5}}{\overline{\mathit{KN}} \cdot \overline{\mathit{NG}} \cdot \sqrt{1 - \beta _{1}^{2}}},\qquad \beta _{5} = \frac{ \overline{\mathit{GL}} \cdot \overline{\mathit{KL}} \cdot \sin ( \angle \mathit{GLK} ) \cdot \beta _{6}}{\overline{\mathit{KG}}},\qquad \beta _{6} = \beta _{7} + \beta_{8}, \\ &\beta _{7} = - \frac{\beta _{10}}{\sqrt{1 - \beta _{2}^{2}}},\qquad \beta _{9} = - \frac{\overline{\mathit{NG}} \cdot \overline{\mathit{GL}} \cdot \sin ( \angle \mathit{LGN} ) \cdot \dot{\theta }_{4}}{\overline{\mathit{LN}}}, \qquad \beta _{10} = \frac{\beta _{9}}{\overline{\mathit{KL}}} - \frac{\beta _{2} \beta _{9}}{\overline{\mathit{LN}}}, \\ &\beta _{11} = \frac{\beta _{9}}{\overline{\mathit{GL}}} - \frac{\beta _{3}\beta _{9}}{\overline{\mathit{LN}}},\qquad \beta _{8} = \left \{ \textstyle\begin{array}{ll} - \frac{\beta _{11}}{\sqrt{1 - \beta _{3}^{2}}},& \angle \mathit{LGN} \le \pi\\ \frac{\beta _{11}}{\sqrt{1 - \beta _{3}^{2}}},& \angle \mathit{LGN} \ge \pi. \end{array}\displaystyle \right . \end{aligned}$$

The ram acceleration of the bucket cylinder has the following expression:

$$ \ddot{r}_{4} = \frac{\overline{\mathit{EN}} \cdot \overline{\mathit{KN}} \cdot ( \alpha _{5} \cdot \beta _{4}^{2} + \sin ( \angle \mathit{KNG} + \angle \mathit{ENB} + \angle \mathit{GNB} ) \cdot \beta _{12} )}{r_{4}} - \frac{ \dot{r}_{4}^{2}}{r_{4}}, $$
(B.9)

where

$$\begin{aligned} &\beta _{12} = \frac{\beta _{5}^{2} + \overline{\mathit{KG}} \cdot \beta _{13}}{ \overline{\mathit{KN}} \cdot \overline{\mathit{NG}} \cdot \sqrt{1 - \beta _{1}^{2}}} + \beta _{4} \cdot \frac{\beta _{1}\beta _{14}}{ ( 1 - \beta _{1}^{2} )}, \qquad \beta _{14} = \frac{ - \overline{\mathit{KG}} \cdot \beta _{5}}{ \overline{\mathit{KN}} \cdot \overline{\mathit{NG}}}, \\ &\beta _{13} = \frac{\overline{\mathit{GL}} \cdot \overline{\mathit{KL}} \cdot ( \cos ( \angle \mathit{GLK} ) \cdot \beta _{6}^{2} + \sin ( \angle \mathit{GLK} ) \cdot \beta _{15} ) \cdot \overline{\mathit{KG}} - \overline{\mathit{GL}} \cdot \overline{\mathit{KL}} \cdot \sin ( \angle \mathit{GLK} ) \cdot \beta _{6} \cdot \beta _{5}}{\overline{\mathit{KG}}^{2}}, \\ &\beta _{15} = \beta _{16} + \beta _{17},\qquad \beta _{16} = - \frac{\beta _{2}\beta _{10}^{2}}{ ( 1 - \beta _{2}^{2} )^{3/2}} - \frac{ \beta _{18}}{\sqrt{1 - \beta _{2}^{2}}},\\ &\beta _{18} = \frac{ \beta _{19}}{\overline{\mathit{KL}}} - \frac{\overline{\mathit{LN}} \cdot ( \beta _{10}\beta _{9} + \beta _{2}\beta _{19} ) - \beta _{2}\beta _{9} ^{2}}{\overline{\mathit{LN}}^{2}}, \\ &\beta _{19} = \frac{\overline{\mathit{NG}} \cdot \overline{\mathit{GL}} \cdot ( \cos ( \angle \mathit{LGN} ) \cdot \dot{\theta }_{4}^{2} - \sin ( \angle \mathit{LGN} ) \cdot \ddot{\theta }_{4} )}{ \overline{\mathit{LN}}} - \frac{\beta _{9}^{2}}{\overline{\mathit{LN}}},\\ &\beta _{21} = \frac{\beta _{19}}{\overline{\mathit{GL}}} - \frac{\overline{\mathit{LN}} \cdot ( \beta _{11}\beta _{9} + \beta _{3}\beta _{19} ) - \beta _{3}\beta _{9}^{2}}{\overline{\mathit{LN}}^{2}}, \\ &\beta _{20} = \left \{ \textstyle\begin{array}{l@{\quad}l} - \frac{\beta _{3}\beta _{11}^{2}}{ ( 1 - \beta _{3}^{2} ) ^{3/2}} - \frac{\beta _{21}}{\sqrt{1 - \beta _{3}^{2}}},& \angle \mathit{LGN} \le \pi\\ \frac{\beta _{3}\beta _{11}^{2}}{ ( 1 - \beta _{3}^{2} )^{3/2}} + \frac{\beta _{21}}{\sqrt{1 - \beta _{3}^{2}}},& \angle \mathit{LGN} \ge \pi. \end{array}\displaystyle \right . \end{aligned}$$

Therefore, Eqs. (B.7)–(B.9) and the various variants included in them specify the inverse kinematics of the bucket cylinder driving mechanism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., Pang, X. & Chen, J. Comprehensive theoretical digging performance analysis for hydraulic excavator using convex polytope method. Multibody Syst Dyn 47, 137–164 (2019). https://doi.org/10.1007/s11044-019-09686-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09686-0

Keywords

Navigation